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Setup

Background

The slice filtration is a filtration of equivariant spectra.

A key part of the solution to the Kervaire Invariant-One problem.

Basic Idea

The construction of the slice tower is analogous to that of the
Postnikov tower.

Instead of killing maps from spheres, we kill maps from slice cells.
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Basic Definitions

Notation

G is a finite group.

X is a G-spectrum.

ρG is the regular representation of G .

SV is the 1-point compactification of a representation space V .

Definition

A slice cell is of the form G+ ∧H SmρH−ε where H ⊆ G and ε = 0, 1.
Its dimension is m|H| − ε.

Definition

Let τ≥n denote the localizing subcategory of G -spectra generated by slice
cells of dimension ≥ n.
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The Slice Tower

Definition

Let Pn−1(−) denoted the localization functor associated to τ≥n.

Since τ≥n+1 ⊆ τ≥n, we have a
natural transformation

Pn(−)⇒ Pn−1(−)

Then for any G -spectrum X we
have a tower.

Its limit is X and its colimit is
contractible.

...

��
PnX

��
X //

;;wwwwwwwww

EE����������������
Pn−1X

��
...
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The Fibers of the Slice Tower

Let Pn
n (X ) denote the fiber of

Pn(X )→ Pn−1(X ).

We call it the n-slice of X .

Pn
n (X ) ≥ n

That is, Pn
nX ∈ τ≥n.

Pn
n (X ) ≤ n

That is, Pn
nX → Pn−1(Pn

nX ) is
an equivalence.

...

��
Pn+1
n+1X

// Pn+1X

��
Pn
nX // PnX

��
Pn−1
n−1X

// Pn−1X

��
...
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An Example: P−1
−1 (X )

τ≥0 = 〈G/H+〉
= {(−1)-connected G -spectra}

τ≥−1 = 〈Σ−1G/H+〉
= {(−2)-connected G -spectra}

P−1X

0

0

π−1(X )

π−2(X )

π−3(X )
...

P−2X

0

0

0

π−2(X )

π−3(X )
...

P−1−1X → P−1X → P−2X

All (−1)-slices can be given as:

P−1−1 (X ) = Σ−1Hπ−1(X )
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Another Example and Consequence

Example

τ≥1 ) {0-connected G -spectra}
S0 ↪→ SρG−1 is the inclusion of fixed points

P0
0X is not necessarily Hπ0(X )

P0X

0

0

π0(X )?

?

?
...

P−1X

0

0

0

π−1(X )

π−2(X )
...

The slice tower is not
necessarily trivial for E-M
spectra.

More generally, in constructing
PnX for n ≥ 0, lower
homotopy groups may be
affected so the slices are not
necessarily E-M spectra.
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Suspensions and the Slice Tower

Note: The slice tower does NOT commute with integer suspensions.

Theorem [Hill-Hopkins-Ravenel]

The slice tower commutes with suspensions by regular representations:

Pk+m|G |(ΣmρGX ) = ΣmρGPkX

and hence,
P
k+m|G |
k+m|G | (ΣmρGX ) = ΣmρGPk

kX

Result

All (m|G | − 1)-slices of X are:

P
m|G |−1
m|G |−1X = ΣmρGP−1−1 (Σ−mρGX ) = ΣmρG−1Hπ−1(Σ−mρGX )
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Determining Slices for Sn ∧ HZ

Goal

Compute the slice towers for X = Sn ∧ HZ where G = Cpk .

We need a tower satisfying appropriate properties (limit, colimit, fibers are
slices).

To Do:

What dimensions are the nontrivial slices in?

What do they look like?

What fiber sequences do they fit into?
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Some Slices of Sn ∧ HZ

We get the (mpk − 1)-slices as:

Pmpk−1
mpk−1X = ΣmρG−1Hπ−1(Sn−mρG ∧ HZ)

Using chain complexes of Mackey functors we compute:

H−1(Sn−mρG ;Z) = π−1(Sn−mρG ∧ HZ)

Theorem 1 [Y]

Let G = Cpk for p an odd prime.

Pmpk−1
mpk−1 (Sn ∧ HZ) =

{
ΣmρG−1HB(k,j) m, n of same parity

∗ otherwise
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Remaining Slices of Sn ∧ HZ

Theorem 2 [Y.]

The nontrivial slices of Sn ∧ HZ where G = Cpk are:

only in dimensions n and (mpa − 1) where 1 ≤ a ≤ k and m is as in
Theorem 1.

of the form SVa ∧ HB(νp(m)+a,a−1) where

Va = (n − 2)ρG − 1−
L⊕

i=1

λ(i)
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Fiber Sequences

Lemma

There are fiber sequences of the form

S−1 ∧ HB(i ,j) → Sλ(p
i ) ∧ HZ→ Sλ(p

j ) ∧ HZ

Suspending by Va gives the sequences to be used in the tower:

SVa ∧ HB(νp(m)+a,a−1) // SVa+1+λ(pνp(m)+a) ∧ HZ

��

SVa+1+λ(pa−1) ∧ HZ

Carolyn M. Yarnall (Wabash) Slice Tower & Suspensions JMM 2014 14 / 17



Fiber Sequences

Lemma

There are fiber sequences of the form

S−1 ∧ HB(i ,j) → Sλ(p
i ) ∧ HZ→ Sλ(p

j ) ∧ HZ

Suspending by Va gives the sequences to be used in the tower:

SVa ∧ HB(νp(m)+a,a−1) // SVa+1+λ(pνp(m)+a) ∧ HZ

��

SVa+1+λ(pa−1) ∧ HZ

Carolyn M. Yarnall (Wabash) Slice Tower & Suspensions JMM 2014 14 / 17



Example: n = 7, p = 3, k = 2

Let S(i , j , k) = S i+jλ(p)+kλ(1) ∧ HZ.

The slice tower for S7 ∧ HZ where G = C9 is as follows:

(5p2 − 1)-slice: S5ρ−1 ∧ HB(2,1)
// S(7, 0, 0)

��
(3p2 − 1)-slice: S3ρ−1 ∧ HB(2,1)

// S(5, 1, 0)

��
(5p − 1)-slice: S2+λ(3) ∧ HB(1,0)

// S(3, 2, 0)

��
(3p − 1)-slice: Sρ−1 ∧ HB(2,0)

// S(3, 1, 1)

��
S(1, 1, 2)
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Let S(i , j , k) = S i+jλ(p)+kλ(1) ∧ HZ.

The slice tower for S7 ∧ HZ where G = C9 is as follows:

(5p2 − 1)-slice: S5ρ−1 ∧ HB(2,1)
// S(7, 0, 0)

��
(3p2 − 1)-slice: S3ρ−1 ∧ HB(2,1)

// S(5, 1, 0)

��
(5p − 1)-slice: S2+λ(3) ∧ HB(1,0)

// S(3, 2, 0)

��
(3p − 1)-slice: Sρ−1 ∧ HB(2,0)

// S(3, 1, 1)

��
S(1, 1, 2)
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Comparative Examples

S5ρ−1 ∧ HB(2,1)
// S(7, 0, 0)

��
S3ρ−1 ∧ HB(2,1)

// S(5, 1, 0)

��
S2+λ(3) ∧ HB(1,0)

// S(3, 2, 0)

��
Sρ−1 ∧ HB(2,0)

// S(3, 1, 1)

��
S(1, 1, 2)

S14ρ−1 ∧ HB(2,1)
// S(16, 0, 0)

��
S12ρ−1 ∧ HB(2,1)

// S(14, 1, 0)
��

S10ρ−1 ∧ HB(2,1)
// S(12, 2, 0)

��
S8ρ−1 ∧ HB(2,1)

// S(10, 3, 0)
��

S6ρ−1 ∧ HB(2,1)
// S(8, 4, 0)

��
S5+4λ(3) ∧ HB(1,0)

// S(6, 5, 0)
��

S4ρ−1 ∧ HB(2,0)
// S(6, 4, 1)

��
S3+3λ(3) ∧ HB(1,0)

// S(4, 4, 2)
��

S3+2λ(3) ∧ HB(1,0)
// S(4, 3, 3)

��
S2ρ−1 ∧ HB(2,0)

// S(4, 2, 4)
��

S(2, 2, 5)
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The Slices of S16 ∧ HZ for G = Cp3 with p = 3

(mp3 − 1)-slices

S14ρ−1 ∧ HB(3,2)

S12ρ−1 ∧ HB(3,2)

S10ρ−1 ∧ HB(3,2)

S8ρ−1 ∧ HB(3,2)

S6ρ−1 ∧ HB(3,2)

(mp2 − 1)-slices

S5+4λ(3) ∧ HB(2,1)

S4ρ−1 ∧ HB(3,1)

S3+3λ(3) ∧ HB(2,1)

S3+2λ(3) ∧ HB(2,1)

S2ρ−1 ∧ HB(3,1)

(mp − 1)-slices

S1+2λ(3)+4λ(1) ∧ HB(1,0)

S1+λ(3)+4λ(1) ∧ HB(2,0)

S1+λ(3)+3λ(1) ∧ HB(1,0)

S1+λ(3)+2λ(1) ∧ HB(1,0)

S1+2λ(1) ∧ HB(2,0)
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