The Slice Tower and Suspensions

Carolyn M. Yarnall

Wabash College

yarnallc@wabash.edu

JMM 2014

Background

- The slice filtration is a filtration of equivariant spectra.
- A key part of the solution to the Kervaire Invariant-One problem.

Background

- The slice filtration is a filtration of equivariant spectra.
- A key part of the solution to the Kervaire Invariant-One problem.

Basic Idea

- The construction of the slice tower is analogous to that of the Postnikov tower.
- Instead of killing maps from spheres, we kill maps from *slice cells*.

Basic Definitions

Notation

- G is a finite group.
- X is a G-spectrum.
- ρ_G is the regular representation of G.
- S^V is the 1-point compactification of a representation space V.

Basic Definitions

Notation

- G is a finite group.
- X is a G-spectrum.
- ρ_G is the regular representation of G.
- S^V is the 1-point compactification of a representation space V.

Definition

A slice cell is of the form $G_+ \wedge_H S^{m\rho_H - \epsilon}$ where $H \subseteq G$ and $\epsilon = 0, 1$. Its dimension is $m|H| - \epsilon$.

Basic Definitions

Notation

- G is a finite group.
- X is a G-spectrum.
- ρ_G is the regular representation of G.
- S^V is the 1-point compactification of a representation space V.

Definition

A slice cell is of the form $G_+ \wedge_H S^{m\rho_H - \epsilon}$ where $H \subseteq G$ and $\epsilon = 0, 1$. Its dimension is $m|H| - \epsilon$.

Definition

Let $\tau_{\geq n}$ denote the localizing subcategory of *G*-spectra generated by slice cells of dimension $\geq n$.

Carolyn M. Yarnall (Wabash)

Definition

Let $P^{n-1}(-)$ denoted the localization functor associated to $\tau_{\geq n}$.

Definition

Let $P^{n-1}(-)$ denoted the localization functor associated to $\tau_{\geq n}$.

• Since $\tau_{\geq n+1} \subseteq \tau_{\geq n}$, we have a natural transformation

$$P^n(-) \Rightarrow P^{n-1}(-)$$

Definition

Let $P^{n-1}(-)$ denoted the localization functor associated to $\tau_{\geq n}$.

• Since $\tau_{\geq n+1} \subseteq \tau_{\geq n}$, we have a natural transformation

$$P^n(-) \Rightarrow P^{n-1}(-)$$

• Then for any *G*-spectrum *X* we have a tower.

Definition

Let $P^{n-1}(-)$ denoted the localization functor associated to $\tau_{\geq n}$.

• Since $\tau_{\geq n+1} \subseteq \tau_{\geq n}$, we have a natural transformation

$$P^n(-) \Rightarrow P^{n-1}(-)$$

• Then for any *G*-spectrum *X* we have a tower.

Definition

Let $P^{n-1}(-)$ denote the localization functor associate to $\tau_{\geq n}$.

• Since $\tau_{\geq n+1} \subseteq \tau_{\geq n}$, we have a natural transformation

$$P^n(-) \Rightarrow P^{n-1}(-)$$

• Then for any *G*-spectrum *X* we have a tower.

Definition

Let $P^{n-1}(-)$ denote the localization functor associate to $\tau_{\geq n}$.

• Since $\tau_{\geq n+1} \subseteq \tau_{\geq n}$, we have a natural transformation

$$P^n(-) \Rightarrow P^{n-1}(-)$$

- Then for any *G*-spectrum *X* we have a tower.
- Its limit is X and its colimit is contractible.

The Fibers of the Slice Tower

• Let $P_n^n(X)$ denote the fiber of

 $P^n(X) \to P^{n-1}(X).$

We call it the *n*-slice of X.

The Fibers of the Slice Tower

• Let $P_n^n(X)$ denote the fiber of

 $P^n(X) \to P^{n-1}(X).$

We call it the *n*-slice of X.

The Fibers of the Slice Tower

• Let $P_n^n(X)$ denote the fiber of $P^n(X) \rightarrow P^{n-1}(X).$ We call it the *n*-slice of X. • $P_n^n(X) \ge n$ That is, $P_n^n X \in \tau_{>n}$. • $P_n^n(X) \leq n$ That is, $P_n^n X \to P^{n-1}(P_n^n X)$ is an equivalence.

$$au_{\geq 0} = \langle G/H_+
angle$$

= {(-1)-connected G-spectra}

$$au_{\geq 0} = \langle G/H_+
angle$$

= {(-1)-connected G-spectra}

$$au_{\geq -1} = \langle \Sigma^{-1} G / H_+
angle \ = \{ (-2) ext{-connected } G ext{-spectra} \}$$

$$au_{\geq 0} = \langle G/H_+
angle \ = \{(-1) ext{-connected } G ext{-spectra}\}$$

$$au_{\geq -1} = \langle \Sigma^{-1} G / H_+
angle \ = \{ (-2) ext{-connected } G ext{-spectra} \}$$

$$au_{\geq 0} = \langle G/H_+
angle$$

= {(-1)-connected G-spectra}

$$au_{\geq -1} = \langle \Sigma^{-1} G / H_+
angle \\ = \{ (-2) \text{-connected } G \text{-spectra} \}$$

$$\begin{array}{c|c}
P^{-1}X & P^{-2}X \\
\hline
0 & 0 \\
\hline
\pi_{-1}(X) & 0 \\
\hline
\pi_{-2}(X) & \pi_{-2}(X) \\
\hline
\vdots & \vdots \\
\end{array}$$

$$P_{-1}^{-1}X \to P^{-1}X \to P^{-2}X$$

$$au_{\geq 0} = \langle G/H_+
angle \ = \{(-1) ext{-connected } G ext{-spectra}\}$$

$$au_{\geq -1} = \langle \Sigma^{-1} G / H_+
angle \\ = \{ (-2) ext{-connected } G ext{-spectra} \}$$

$$\begin{array}{c|c}
P^{-1}X & P^{-2}X \\
\hline
0 & 0 \\
\hline
\pi_{-1}(X) & 0 \\
\hline
\pi_{-2}(X) & \pi_{-2}(X) \\
\hline
\vdots & \vdots \\
\end{array}$$

$$P_{-1}^{-1}X \rightarrow P^{-1}X \rightarrow P^{-2}X$$

All (-1)-slices can be given as:

$$P_{-1}^{-1}(X) = \Sigma^{-1} H_{\pi_{-1}}(X)$$

Carolyn M. Yarnall (Wabash)

Example

• $\tau_{\geq 1} \supsetneq \{ 0 \text{-connected } G \text{-spectra} \}$

- $\tau_{\geq 1} \supsetneq \{ 0 \text{-connected } G \text{-spectra} \}$
- $S^0 \hookrightarrow S^{
 ho_G-1}$ is the inclusion of fixed points

- $\tau_{\geq 1} \supsetneq \{ 0 \text{-connected } G \text{-spectra} \}$
- $S^0 \hookrightarrow S^{
 ho_G 1}$ is the inclusion of fixed points
- $P_0^0 X$ is not necessarily $H\pi_0(X)$

- $\tau_{\geq 1} \supsetneq \{ 0 \text{-connected } G \text{-spectra} \}$
- $S^0 \hookrightarrow S^{
 ho_G 1}$ is the inclusion of fixed points
- $P_0^0 X$ is not necessarily $H\pi_0(X)$

- $\tau_{\geq 1} \supsetneq \{ 0 \text{-connected } G \text{-spectra} \}$
- $S^0 \hookrightarrow S^{
 ho_G-1}$ is the inclusion of fixed points
- $P_0^0 X$ is not necessarily $H_{\pi_0}(X)$

Example

- $\tau_{\geq 1} \supsetneq \{ 0 \text{-connected } G \text{-spectra} \}$
- $S^0 \hookrightarrow S^{
 ho_G-1}$ is the inclusion of fixed points
- $P_0^0 X$ is not necessarily $H\pi_0(X)$

 The slice tower is not necessarily trivial for E-M spectra.

- $\tau_{\geq 1} \supsetneq \{ 0 \text{-connected } G \text{-spectra} \}$
- $S^0 \hookrightarrow S^{
 ho_G-1}$ is the inclusion of fixed points
- $P_0^0 X$ is not necessarily $H\pi_0(X)$

- The slice tower is not necessarily trivial for E-M spectra.
- More generally, in constructing *PⁿX* for *n* ≥ 0, lower homotopy groups may be affected so the slices are not necessarily E-M spectra.

Theorem [Hill-Hopkins-Ravenel]

The slice tower commutes with suspensions by regular representations:

$$P^{k+m|G|}(\Sigma^{m
ho_G}X)=\Sigma^{m
ho_G}P^kX$$

Theorem [Hill-Hopkins-Ravenel]

The slice tower commutes with suspensions by regular representations:

$$P^{k+m|G|}(\Sigma^{m\rho_G}X)=\Sigma^{m\rho_G}P^kX$$

and hence,

$$P_{k+m|G|}^{k+m|G|}(\Sigma^{m\rho_G}X) = \Sigma^{m\rho_G}P_k^kX$$

Theorem [Hill-Hopkins-Ravenel]

The slice tower commutes with suspensions by regular representations:

$$P^{k+m|G|}(\Sigma^{m\rho_G}X)=\Sigma^{m\rho_G}P^kX$$

and hence,

$$P_{k+m|G|}^{k+m|G|}(\Sigma^{m\rho_G}X) = \Sigma^{m\rho_G}P_k^kX$$

Result

All (m|G|-1)-slices of X are:

$$P_{m|G|-1}^{m|G|-1}X = \Sigma^{m\rho_G} P_{-1}^{-1}(\Sigma^{-m\rho_G}X) = \Sigma^{m\rho_G-1} H_{\pi_{-1}}(\Sigma^{-m\rho_G}X)$$

Determining Slices for $S^n \wedge H\underline{\mathbb{Z}}$

Goal

Compute the slice towers for $X = S^n \wedge H\underline{\mathbb{Z}}$ where $G = C_{p^k}$.

Goal

Compute the slice towers for $X = S^n \wedge H\underline{\mathbb{Z}}$ where $G = C_{p^k}$.

We need a tower satisfying appropriate properties (limit, colimit, fibers are slices).

To Do:

- What dimensions are the nontrivial slices in?
- What do they look like?
- What fiber sequences do they fit into?

Some Slices of $S^n \wedge H\underline{\mathbb{Z}}$

We get the $(mp^k - 1)$ -slices as:

$$P_{mp^{k}-1}^{mp^{k}-1}X = \Sigma^{m\rho_{G}-1}H_{\underline{\pi}-1}(S^{n-m\rho_{G}} \wedge H\underline{\mathbb{Z}})$$

Some Slices of $S^n \wedge H\underline{\mathbb{Z}}$

We get the $(mp^k - 1)$ -slices as:

$$P^{mp^k-1}_{mp^k-1}X = \Sigma^{m
ho_G-1}H \underline{\pi_{-1}(S^{n-m
ho_G} \wedge H\underline{\mathbb{Z}})}$$

Using chain complexes of Mackey functors we compute:

$$\underline{H_{-1}(S^{n-m
ho_G};\underline{\mathbb{Z}})}= \pi_{-1}(S^{n-m
ho_G}\wedge H\underline{\mathbb{Z}})$$

Some Slices of $S^n \wedge H\underline{\mathbb{Z}}$

We get the $(mp^k - 1)$ -slices as:

$$P_{mp^{k-1}}^{mp^{k-1}}X = \Sigma^{m
ho_{G}-1}H \underline{\pi_{-1}(S^{n-m
ho_{G}} \wedge H\underline{\mathbb{Z}})}$$

Using chain complexes of Mackey functors we compute:

$$H_{-1}(S^{n-m
ho_G};\underline{\mathbb{Z}})=\pi_{-1}(S^{n-m
ho_G}\wedge H\underline{\mathbb{Z}})$$

Theorem 1 [Y]

Let $G = C_{p^k}$ for p an odd prime.

$$P_{mp^{k}-1}^{mp^{k}-1}(S^{n} \wedge H\underline{\mathbb{Z}}) = \begin{cases} \Sigma^{m\rho_{G}-1}H\underline{B}_{(k,j)} & m, n \text{ of same parity} \\ * & \text{otherwise} \end{cases}$$

Theorem 2 [Y.]

The nontrivial slices of $S^n \wedge H\underline{\mathbb{Z}}$ where $G = C_{p^k}$ are:

- only in dimensions n and $(mp^a 1)$ where $1 \le a \le k$ and m is as in Theorem 1.
- of the form $S^{V_a} \wedge H \underline{B}_{(
 u_p(m)+a,a-1)}$ where

$$V_{a} = (n-2)\rho_{G} - 1 - \bigoplus_{i=1}^{L} \lambda(i)$$

Theorem 2 [Y.]

The nontrivial slices of $S^n \wedge H\underline{\mathbb{Z}}$ where $G = C_{p^k}$ are:

- only in dimensions n and $(mp^a 1)$ where $1 \le a \le k$ and m is as in Theorem 1.
- of the form $S^{V_a} \wedge H \underline{B}_{(
 u_p(m)+a,a-1)}$ where

$$V_{a} = (n-2)\rho_{G} - 1 - \bigoplus_{i=1}^{L} \lambda(i)$$

Lemma

There are fiber sequences of the form

$$S^{-1} \wedge H\underline{B}_{(i,j)} o S^{\lambda(p^i)} \wedge H\underline{\mathbb{Z}} o S^{\lambda(p^j)} \wedge H\underline{\mathbb{Z}}$$

Lemma

There are fiber sequences of the form

$$S^{-1} \wedge H\underline{B}_{(i,j)} o S^{\lambda(p^i)} \wedge H\underline{\mathbb{Z}} o S^{\lambda(p^j)} \wedge H\underline{\mathbb{Z}}$$

Suspending by V_a gives the sequences to be used in the tower:

$$S^{V_{a}} \wedge H\underline{B}_{(\nu_{p}(m)+a,a-1)} \longrightarrow S^{V_{a}+1+\lambda(p^{\nu_{p}(m)+a})} \wedge H\underline{\mathbb{Z}}$$

$$\downarrow$$

$$S^{V_{a}+1+\lambda(p^{a-1})} \wedge H\mathbb{Z}$$

Example: $n = \overline{7}, p = 3, k = 2$

Example: n = 7, p = 3, k = 2

Let $S(i, j, k) = S^{i+j\lambda(p)+k\lambda(1)} \wedge H\underline{\mathbb{Z}}$.

Example: n = 7, p = 3, k = 2

Let $S(i, j, k) = S^{i+j\lambda(p)+k\lambda(1)} \wedge H\underline{\mathbb{Z}}$.

The slice tower for $S^7 \wedge H\underline{\mathbb{Z}}$ where $G = C_9$ is as follows:

$$(5p^{2}-1)\text{-slice:} \qquad S^{5p-1} \wedge H\underline{B}_{(2,1)} \longrightarrow S(7,0,0)$$

$$(3p^{2}-1)\text{-slice:} \qquad S^{3p-1} \wedge H\underline{B}_{(2,1)} \longrightarrow S(5,1,0)$$

$$(5p-1)\text{-slice:} \qquad S^{2+\lambda(3)} \wedge H\underline{B}_{(1,0)} \longrightarrow S(3,2,0)$$

$$(3p-1)\text{-slice:} \qquad S^{p-1} \wedge H\underline{B}_{(2,0)} \longrightarrow S(3,1,1)$$

$$\downarrow$$

$$S(1,1,2)$$

Comparative Examples

Comparative Examples

Slice Tower & Suspensions

The Slices of $S^{16} \wedge H\underline{\mathbb{Z}}$ for $G = C_{p^3}$ with p = 3

 $(mp^3 - 1)$ -slices

 $S^{14
ho-1}\wedge H\underline{B}_{(3,2)}$

 $S^{12
ho-1}\wedge H\underline{B}_{(3,2)}$

 $S^{10
ho-1} \wedge H\underline{B}_{(3,2)}$

 $S^{8
ho-1}\wedge H\underline{B}_{(3,2)}$

 $S^{6
ho-1} \wedge H\underline{B}_{(3,2)}$

The Slices of $S^{16} \wedge H\underline{\mathbb{Z}}$ for $G = C_{p^3}$ with p = 3

$(mp^3 - 1)$ -slices	$(mp^2 - 1)$ -slices
$S^{14 ho-1}\wedge H\underline{B}_{(3,2)}$	$S^{5+4\lambda(3)} \wedge H\underline{B}_{(2,1)}$
$S^{12 ho-1}\wedge H\underline{B}_{(3,2)}$	$S^{4 ho-1}\wedge H\underline{B}_{(3,1)}$
$S^{10 ho-1}\wedge H\underline{B}_{(3,2)}$	$S^{3+3\lambda(3)} \wedge H\underline{B}_{(2,1)}$
$S^{8 ho-1}\wedge H\underline{B}_{(3,2)}$	$S^{3+2\lambda(3)} \wedge H\underline{B}_{(2,1)}$
$S^{6 ho-1}\wedge H\underline{B}_{(3,2)}$	$S^{2 ho-1}\wedge H \underline{B}_{(3,1)}$

The Slices of $S^{16} \wedge H\underline{\mathbb{Z}}$ for $G = C_{p^3}$ with p = 3

$(mp^3 - 1)$ -slices	(mp^2-1) -slices	(mp-1)-slices
$S^{14 ho-1}\wedge H\underline{B}_{(3,2)}$	$S^{5+4\lambda(3)}\wedge H\underline{B}_{(2,1)}$	$S^{1+2\lambda(3)+4\lambda(1)}\wedge H\underline{B}_{(1,0)}$
$S^{12 ho-1}\wedge H\underline{B}_{(3,2)}$	$\mathcal{S}^{4 ho-1}\wedge H\underline{B}_{(3,1)}$	$S^{1+\lambda(3)+4\lambda(1)}\wedge H\underline{B}_{(2,0)}$
$S^{10 ho-1}\wedge H\underline{B}_{(3,2)}$	$S^{3+3\lambda(3)} \wedge H\underline{B}_{(2,1)}$	$S^{1+\lambda(3)+3\lambda(1)}\wedge H\underline{B}_{(1,0)}$
$S^{8 ho-1}\wedge H\underline{B}_{(3,2)}$	$S^{3+2\lambda(3)} \wedge H\underline{B}_{(2,1)}$	$S^{1+\lambda(3)+2\lambda(1)}\wedge H\underline{B}_{(1,0)}$
$S^{6 ho-1}\wedge H\underline{B}_{(3,2)}$	$S^{2 ho-1}\wedge H \underline{B}_{(3,1)}$	$S^{1+2\lambda(1)}\wedge H \underline{B}_{(2,0)}$