The Slice Tower and Suspensions

Carolyn M. Yarnall
Wabash College
yarnallc@wabash.edu

JMM 2014

Setup

Background

- The slice filtration is a filtration of equivariant spectra.
- A key part of the solution to the Kervaire Invariant-One problem.

Setup

Background

- The slice filtration is a filtration of equivariant spectra.
- A key part of the solution to the Kervaire Invariant-One problem.

Basic Idea

- The construction of the slice tower is analogous to that of the Postnikov tower.
- Instead of killing maps from spheres, we kill maps from slice cells.

Basic Definitions

Notation

- G is a finite group.
- X is a G-spectrum.
- ρ_{G} is the regular representation of G.
- S^{V} is the 1-point compactification of a representation space V.

Basic Definitions

Notation

- G is a finite group.
- X is a G-spectrum.
- ρ_{G} is the regular representation of G.
- S^{V} is the 1-point compactification of a representation space V.

Definition

A slice cell is of the form $G_{+} \wedge_{H} S^{m \rho_{H}-\epsilon}$ where $H \subseteq G$ and $\epsilon=0,1$. Its dimension is $m|H|-\epsilon$.

Basic Definitions

Notation

- G is a finite group.
- X is a G-spectrum.
- ρ_{G} is the regular representation of G.
- S^{V} is the 1-point compactification of a representation space V.

Definition

A slice cell is of the form $G_{+} \wedge_{H} S^{m \rho_{H}-\epsilon}$ where $H \subseteq G$ and $\epsilon=0,1$. Its dimension is $m|H|-\epsilon$.

Definition

Let $\tau_{\geq n}$ denote the localizing subcategory of G-spectra generated by slice cells of dimension $\geq n$.

The Slice Tower

Definition

Let $P^{n-1}(-)$ denoted the localization functor associated to $\tau \geq n$.

The Slice Tower

Definition

Let $P^{n-1}(-)$ denoted the localization functor associated to $\tau \geq n$.

- Since $\tau_{\geq n+1} \subseteq \tau_{\geq n}$, we have a natural transformation

$$
P^{n}(-) \Rightarrow P^{n-1}(-)
$$

The Slice Tower

Definition

Let $P^{n-1}(-)$ denoted the localization functor associated to $\tau_{\geq n}$.

- Since $\tau_{\geq n+1} \subseteq \tau_{\geq n}$, we have a natural transformation

$$
P^{n}(-) \Rightarrow P^{n-1}(-)
$$

- Then for any G-spectrum X we have a tower.

The Slice Tower

Definition

Let $P^{n-1}(-)$ denoted the localization functor associated to $\tau_{\geq n}$.

- Since $\tau_{\geq n+1} \subseteq \tau_{\geq n}$, we have a natural transformation

$$
P^{n}(-) \Rightarrow P^{n-1}(-)
$$

- Then for any G-spectrum X we have a tower.

The Slice Tower

Definition

Let $P^{n-1}(-)$ denote the localization functor associate to $\tau_{\geq n}$.

- Since $\tau_{\geq n+1} \subseteq \tau_{\geq n}$, we have a natural transformation

$$
P^{n}(-) \Rightarrow P^{n-1}(-)
$$

- Then for any G-spectrum X we have a tower.

The Slice Tower

Definition

Let $P^{n-1}(-)$ denote the localization functor associate to $\tau_{\geq n}$.

- Since $\tau_{\geq n+1} \subseteq \tau_{\geq n}$, we have a natural transformation

$$
P^{n}(-) \Rightarrow P^{n-1}(-)
$$

- Then for any G-spectrum X we have a tower.
- Its limit is X and its colimit is
 contractible.

The Fibers of the Slice Tower

- Let $P_{n}^{n}(X)$ denote the fiber of

$$
P^{n}(X) \rightarrow P^{n-1}(X)
$$

We call it the n-slice of X.

The Fibers of the Slice Tower

- Let $P_{n}^{n}(X)$ denote the fiber of

$$
P^{n}(X) \rightarrow P^{n-1}(X)
$$

We call it the n-slice of X.

$$
P_{n+1}^{n+1} X \longrightarrow P^{n+1} X
$$

$$
P_{n-1}^{n-1} X \longrightarrow P^{n-1} X
$$

The Fibers of the Slice Tower

- Let $P_{n}^{n}(X)$ denote the fiber of

$$
P^{n}(X) \rightarrow P^{n-1}(X)
$$

We call it the n-slice of X.

- $P_{n}^{n}(X) \geq n$

That is, $P_{n}^{n} X \in \tau_{\geq n}$.

- $P_{n}^{n}(X) \leq n$

$$
P_{n-1}^{n-1} X \longrightarrow P^{n-1} X
$$

That is, $P_{n}^{n} X \rightarrow P^{n-1}\left(P_{n}^{n} X\right)$ is an equivalence.

$$
P_{n+1}^{n+1} X \longrightarrow P^{n+1} X
$$

An Example: $P_{-1}^{-1}(X)$

$$
\begin{aligned}
\tau_{\geq 0} & =\left\langle G / H_{+}\right\rangle \\
& =\{(-1)-\text { connected } G \text {-spectra }\}
\end{aligned}
$$

An Example: $P_{-1}^{-1}(X)$

$$
\begin{aligned}
\tau_{\geq 0} & =\left\langle G / H_{+}\right\rangle \\
& =\{(-1) \text {-connected } G \text {-spectra }\}
\end{aligned}
$$

$$
\begin{aligned}
\tau_{\geq-1} & =\left\langle\Sigma^{-1} G / H_{+}\right\rangle \\
& =\{(-2) \text {-connected } G \text {-spectra }\}
\end{aligned}
$$

An Example: $P_{-1}^{-1}(X)$

$$
\begin{aligned}
\tau_{\geq 0} & =\left\langle G / H_{+}\right\rangle \\
& =\{(-1) \text {-connected } G \text {-spectra }\} \\
\tau_{\geq-1} & =\left\langle\Sigma^{-1} G / H_{+}\right\rangle \\
& =\{(-2) \text {-connected } G \text {-spectra }\}
\end{aligned}
$$

$P^{-2} X$
0
0
0
$\pi_{-2}(X)$
$\pi_{-3}(X)$
\vdots

An Example: $P_{-1}^{-1}(X)$

$$
\begin{aligned}
\tau_{\geq 0} & =\left\langle G / H_{+}\right\rangle \\
& =\{(-1) \text {-connected } G \text {-spectra }\} \\
\tau_{\geq-1} & =\left\langle\Sigma^{-1} G / H_{+}\right\rangle \\
& =\{(-2) \text {-connected } G \text {-spectra }\}
\end{aligned}
$$

$P^{-1} X$
0
0
$\pi_{-1}(X)$
$\pi_{-2}(X)$
$\pi_{-3}(X)$
\vdots

$P^{-2} X$
0
0
0
$\pi_{-2}(X)$
$\pi_{-3}(X)$
\vdots

$$
P_{-1}^{-1} X \rightarrow P^{-1} X \rightarrow P^{-2} X
$$

An Example: $P_{-1}^{-1}(X)$

$$
\begin{aligned}
\tau_{\geq 0} & =\left\langle G / H_{+}\right\rangle \\
& =\{(-1) \text {-connected } G \text {-spectra }\} \\
\tau_{\geq-1} & =\left\langle\Sigma^{-1} G / H_{+}\right\rangle \\
& =\{(-2) \text {-connected } G \text {-spectra }\}
\end{aligned}
$$

$P^{-1} X$
0
0
$\pi_{-1}(X)$
$\pi_{-2}(X)$
$\pi_{-3}(X)$
\vdots

$P^{-2} X$
0
0
0
$\pi_{-2}(X)$
$\pi_{-3}(X)$
\vdots

$$
P_{-1}^{-1} X \rightarrow P^{-1} X \rightarrow P^{-2} X
$$

All (-1)-slices can be given as:

$$
P_{-1}^{-1}(X)=\Sigma^{-1} H \pi_{-1}(X)
$$

Another Example and Consequence

Another Example and Consequence

Example

- $\tau_{\geq 1} \supsetneq\{0$-connected G-spectra $\}$

Another Example and Consequence

Example

- $\tau_{\geq 1} \supsetneq\{0$-connected G-spectra $\}$
- $S^{0} \hookrightarrow S^{\rho_{G}-1}$ is the inclusion of fixed points

Another Example and Consequence

Example

- $\tau_{\geq 1} \supsetneq\{0$-connected G-spectra $\}$
- $S^{0} \hookrightarrow S^{\rho_{G}-1}$ is the inclusion of fixed points
- $P_{0}^{0} X$ is not necessarily $H \underline{\pi_{0}(X)}$

Another Example and Consequence

Example

- $\tau_{\geq 1} \supsetneq\{0$-connected G-spectra $\}$
- $S^{0} \hookrightarrow S^{\rho_{G}-1}$ is the inclusion of fixed points
- $P_{0}^{0} X$ is not necessarily $H \underline{\pi_{0}(X)}$

Another Example and Consequence

Example

- $\tau_{\geq 1} \supsetneq\{0$-connected G-spectra $\}$
- $S^{0} \hookrightarrow S^{\rho_{G}-1}$ is the inclusion of fixed points
- $P_{0}^{0} X$ is not necessarily $H \underline{\pi_{0}(X)}$

Another Example and Consequence

Example

- $\tau_{\geq 1} \supsetneq\{0$-connected G-spectra $\}$
- $S^{0} \hookrightarrow S^{\rho_{G}-1}$ is the inclusion of fixed points
- $P_{0}^{0} X$ is not necessarily $H \underline{\pi_{0}(X)}$

- The slice tower is not necessarily trivial for E-M spectra.

Another Example and Consequence

Example

- $\tau_{\geq 1} \supsetneq\{0$-connected G-spectra $\}$
- $S^{0} \hookrightarrow S^{\rho_{G}-1}$ is the inclusion of fixed points
- $P_{0}^{0} X$ is not necessarily $H \underline{\pi_{0}(X)}$

- The slice tower is not necessarily trivial for E-M spectra.
- More generally, in constructing $P^{n} X$ for $n \geq 0$, lower homotopy groups may be affected so the slices are not necessarily E-M spectra.

Suspensions and the Slice Tower

Note: The slice tower does NOT commute with integer suspensions.

Suspensions and the Slice Tower

Note: The slice tower does NOT commute with integer suspensions.

Theorem [Hill-Hopkins-Ravenel]

The slice tower commutes with suspensions by regular representations:

$$
P^{k+m|G|}\left(\Sigma^{m \rho_{G}} X\right)=\Sigma^{m \rho_{G}} P^{k} X
$$

Suspensions and the Slice Tower

Note: The slice tower does NOT commute with integer suspensions.

Theorem [Hill-Hopkins-Ravenel]

The slice tower commutes with suspensions by regular representations:

$$
P^{k+m|G|}\left(\Sigma^{m \rho_{G}} X\right)=\Sigma^{m \rho_{G}} P^{k} X
$$

and hence,

$$
P_{k+m|G|}^{k+m|G|}\left(\Sigma^{m \rho_{G}} X\right)=\Sigma^{m \rho_{G}} P_{k}^{k} X
$$

Suspensions and the Slice Tower

Note: The slice tower does NOT commute with integer suspensions.

Theorem [Hill-Hopkins-Ravenel]

The slice tower commutes with suspensions by regular representations:

$$
P^{k+m|G|}\left(\Sigma^{m \rho_{G}} X\right)=\Sigma^{m \rho_{G}} P^{k} X
$$

and hence,

$$
P_{k+m|G|}^{k+m|G|}\left(\Sigma^{m \rho_{G}} X\right)=\Sigma^{m \rho_{G}} P_{k}^{k} X
$$

Result

All $(m|G|-1)$-slices of X are:

$$
P_{m|G|-1}^{m|G|-1} X=\Sigma^{m \rho_{G}} P_{-1}^{-1}\left(\Sigma^{-m \rho_{G}} X\right)=\Sigma^{m \rho_{G}-1} H \pi_{-1}\left(\Sigma^{-m \rho_{G}} X\right)
$$

Determining Slices for $S^{n} \wedge H \mathbb{Z}$

Determining Slices for $S^{n} \wedge H \mathbb{Z}$

Goal

Compute the slice towers for $X=S^{n} \wedge H \underline{\mathbb{Z}}$ where $G=C_{p^{k}}$.

Determining Slices for $S^{n} \wedge H \mathbb{Z}$

Goal

Compute the slice towers for $X=S^{n} \wedge H \underline{\mathbb{Z}}$ where $G=C_{p^{k}}$.
We need a tower satisfying appropriate properties (limit, colimit, fibers are slices).

To Do:

- What dimensions are the nontrivial slices in?
- What do they look like?
- What fiber sequences do they fit into?

Some Slices of $S^{n} \wedge H \mathbb{Z}$

We get the $\left(m p^{k}-1\right)$-slices as:

$$
P_{m p^{k}-1}^{m p^{k}-1} X=\Sigma^{m \rho_{G}-1} H \pi_{-1}\left(S^{n-m \rho_{G}} \wedge H \underline{\underline{Z}}\right)
$$

Some Slices of $S^{n} \wedge H \mathbb{Z}$

We get the $\left(m p^{k}-1\right)$-slices as:

$$
P_{m p^{k}-1}^{m p^{k}-1} X=\Sigma^{m \rho_{G}-1} H \pi_{-1}\left(S^{n-m \rho_{G}} \wedge H \underline{\underline{Z}}\right)
$$

Using chain complexes of Mackey functors we compute:

$$
\underline{H_{-1}\left(S^{n-m \rho_{G}} ; \underline{\mathbb{Z}}\right)}=\underline{\pi_{-1}\left(S^{n-m \rho_{G}} \wedge H \underline{\mathbb{Z}}\right)}
$$

Some Slices of $S^{n} \wedge H \underline{Z}$

We get the $\left(m p^{k}-1\right)$-slices as:

$$
P_{m p^{k}-1}^{m p^{k}-1} X=\Sigma^{m \rho_{G}-1} H \underline{\pi_{-1}\left(S^{n-m \rho_{G}} \wedge H \underline{\mathbb{Z}}\right)}
$$

Using chain complexes of Mackey functors we compute:

$$
\underline{H_{-1}\left(S^{n-m \rho_{G}} ; \underline{\mathbb{Z}}\right)}=\underline{\pi_{-1}\left(S^{n-m \rho_{G}} \wedge H \underline{\mathbb{Z}}\right)}
$$

Theorem 1 [Y]

Let $G=C_{p^{k}}$ for p an odd prime.

$$
P_{m p^{k}-1}^{m p^{k}-1}\left(S^{n} \wedge H \underline{\mathbb{Z}}\right)= \begin{cases}\Sigma^{m \rho_{G}-1} H \underline{B}_{(k, j)} & m, n \text { of same parity } \\ * & \text { otherwise }\end{cases}
$$

Remaining Slices of $S^{n} \wedge H \mathbb{Z}$

Theorem 2 [Y.]

The nontrivial slices of $S^{n} \wedge H \underline{\mathbb{Z}}$ where $G=C_{p^{k}}$ are:

- only in dimensions n and $\left(m p^{a}-1\right)$ where $1 \leq a \leq k$ and m is as in Theorem 1.
- of the form $S^{V_{a}} \wedge H \underline{B}_{\left(\nu_{p}(m)+a, a-1\right)}$ where

$$
V_{a}=(n-2) \rho_{G}-1-\bigoplus_{i=1}^{L} \lambda(i)
$$

Remaining Slices of $S^{n} \wedge H \mathbb{Z}$

Theorem 2 [Y.]

The nontrivial slices of $S^{n} \wedge H \underline{\mathbb{Z}}$ where $G=C_{p^{k}}$ are:

- only in dimensions n and $\left(m p^{a}-1\right)$ where $1 \leq a \leq k$ and m is as in Theorem 1.
- of the form $S^{V_{a}} \wedge H \underline{B}_{\left(\nu_{p}(m)+a, a-1\right)}$ where

$$
V_{a}=(n-2) \rho_{G}-1-\bigoplus_{i=1}^{L} \lambda(i)
$$

Fiber Sequences

Lemma

There are fiber sequences of the form

$$
S^{-1} \wedge H \underline{B}_{(i, j)} \rightarrow S^{\lambda\left(p^{i}\right)} \wedge H \underline{\mathbb{Z}} \rightarrow S^{\lambda\left(p^{j}\right)} \wedge H \underline{\mathbb{Z}}
$$

Fiber Sequences

Lemma

There are fiber sequences of the form

$$
S^{-1} \wedge H \underline{B}_{(i, j)} \rightarrow S^{\lambda\left(p^{i}\right)} \wedge H \underline{\mathbb{Z}} \rightarrow S^{\lambda\left(p^{j}\right)} \wedge H \underline{\mathbb{Z}}
$$

Suspending by V_{a} gives the sequences to be used in the tower:

$$
\begin{aligned}
S^{V_{a}} \wedge H \underline{B}_{\left(\nu_{p}(m)+a, a-1\right)} \longrightarrow S^{V_{a}+1+\lambda\left(p^{\nu_{p}(m)+a}\right)} \wedge H \underline{\mathbb{Z}} \\
S^{V_{a}+1+\lambda\left(p^{a-1}\right)} \wedge H \underline{\mathbb{Z}}
\end{aligned}
$$

Example: $n=7, p=3, k=2$

Example: $n=7, p=3, k=2$

Let $S(i, j, k)=S^{i+j \lambda(p)+k \lambda(1)} \wedge H \underline{\mathbb{Z}}$.

Example: $n=7, p=3, k=2$

Let $S(i, j, k)=S^{i+j \lambda(p)+k \lambda(1)} \wedge H \underline{\mathbb{Z}}$.
The slice tower for $S^{7} \wedge H \underline{\mathbb{Z}}$ where $G=C_{9}$ is as follows:

Comparative Examples

$$
\begin{gathered}
S^{5 \rho-1} \wedge H \underline{B}_{(2,1)} \longrightarrow S(7,0,0) \\
S^{3 \rho-1} \wedge H \underline{B}_{(2,1)} \longrightarrow S(5,1,0) \\
S^{2+\lambda(3)} \wedge H \underline{B}_{(1,0)} \longrightarrow S(3,2,0) \\
S^{\rho-1} \wedge H \underline{B}_{(2,0)} \longrightarrow S(3,1,1) \\
\\
S(1,1,2)
\end{gathered}
$$

Comparative Examples

$$
\begin{array}{ll}
S^{5 \rho-1} \wedge H \underline{B}_{(2,1)} & S(7,0,0) \\
S^{3 \rho-1} \wedge H \underline{B}_{(2,1)} \longrightarrow & S(5,1,0) \\
S^{2+\lambda(3)} \wedge H \underline{B}_{(1,0)} \longrightarrow & S(3,2,0) \\
S^{\rho-1} \wedge H \underline{B}_{(2,0)} \longrightarrow & S(3,1,1) \\
& S(1,1,2)
\end{array}
$$

$$
\begin{aligned}
& S^{14 \rho-1} \wedge H \underline{B}_{(2,1)}>S(16,0,0) \\
& \begin{array}{c}
\downarrow \\
S^{12 \rho-1} \wedge H \underline{B}_{(2,1)}
\end{array}>S(14,1,0) \\
& S^{10 \rho-1} \wedge H \underline{B}_{(2,1)}>S(12,2,0) \\
& \downarrow \\
& S^{8 \rho-1} \wedge H \underline{B}_{(2,1)}>S(10,3,0) \\
& \begin{array}{c}
\downarrow \\
S^{6 \rho-1} \wedge H_{(2,1)} \rightarrow S(8,4,0)
\end{array} \\
& \begin{array}{c}
\downarrow \\
S^{5+4 \lambda(3)} \wedge H \underline{B}_{(1,0)}>S(6,5,0)
\end{array} \\
& \begin{array}{c}
\downarrow \\
S^{4 \rho-1} \wedge H \underline{B}_{(2,0)} \rightarrow S(6,4,1)
\end{array} \\
& \begin{array}{c}
\downarrow \\
S^{3+3 \lambda(3)} \wedge H \underline{B}_{(1,0)}>S(4,4,2)
\end{array} \\
& \begin{array}{c}
\downarrow \\
S^{3+2 \lambda(3)} \wedge H \underline{B}_{(1,0)}>S(4,3,3) \\
\downarrow
\end{array} \\
& S^{2 \rho-1} \wedge H \underline{B}_{(2,0)} \rightarrow S(4,2,4) \\
& \text { V } \\
& S(2,2,5)
\end{aligned}
$$

The Slices of $S^{16} \wedge H \mathbb{Z}$ for $G=C_{p^{3}}$ with $p=3$

$$
\begin{aligned}
& \frac{\left(m p^{3}-1\right) \text {-slices }}{S^{14 \rho-1} \wedge H \underline{B}_{(3,2)}} \\
& S^{12 \rho-1} \wedge H \underline{B}_{(3,2)} \\
& S^{10 \rho-1} \wedge H \underline{B}_{(3,2)} \\
& S^{8 \rho-1} \wedge H \underline{B}_{(3,2)} \\
& S^{6 \rho-1} \wedge H \underline{B}_{(3,2)}
\end{aligned}
$$

The Slices of $S^{16} \wedge H \mathbb{Z}$ for $G=C_{p^{3}}$ with $p=3$

$$
\begin{array}{ll}
\frac{\left(m p^{3}-1\right) \text {-slices }}{} & \frac{\left(m p^{2}-1\right) \text {-slices }}{} \\
S^{14 \rho-1} \wedge H \underline{B}_{(3,2)} & S^{5+4 \lambda(3)} \wedge H \underline{B}_{(2,1)} \\
S^{12 \rho-1} \wedge H \underline{B}_{(3,2)} & S^{4 \rho-1} \wedge H \underline{B}_{(3,1)} \\
S^{10 \rho-1} \wedge H \underline{B}_{(3,2)} & S^{3+3 \lambda(3)} \wedge H \underline{B}_{(2,1)} \\
S^{8 \rho-1} \wedge H \underline{B}_{(3,2)} & S^{3+2 \lambda(3)} \wedge H \underline{B}_{(2,1)} \\
S^{6 \rho-1} \wedge H \underline{B}_{(3,2)} & S^{2 \rho-1} \wedge H \underline{B}_{(3,1)}
\end{array}
$$

The Slices of $S^{16} \wedge H \mathbb{Z}$ for $G=C_{p^{3}}$ with $p=3$

$\frac{\left(m p^{3}-1\right) \text {-slices }}{}$	$\frac{\left(m p^{2}-1\right) \text {-slices }}{}$	$\frac{(m p-1) \text {-slices }}{}$
$S^{14 \rho-1} \wedge H \underline{B}_{(3,2)}$	$S^{5+4 \lambda(3)} \wedge H \underline{B}_{(2,1)}$	$S^{1+2 \lambda(3)+4 \lambda(1)} \wedge H \underline{B}_{(1,0)}$
$S^{12 \rho-1} \wedge H \underline{B}_{(3,2)}$	$S^{4 \rho-1} \wedge H \underline{B}_{(3,1)}$	$S^{1+\lambda(3)+4 \lambda(1)} \wedge H \underline{B}_{(2,0)}$
$S^{10 \rho-1} \wedge H \underline{B}_{(3,2)}$	$S^{3+3 \lambda(3)} \wedge H \underline{B}_{(2,1)}$	$S^{1+\lambda(3)+3 \lambda(1)} \wedge H \underline{B}_{(1,0)}$
$S^{8 \rho-1} \wedge H \underline{B}_{(3,2)}$	$S^{3+2 \lambda(3)} \wedge H \underline{B}_{(2,1)}$	$S^{1+\lambda(3)+2 \lambda(1)} \wedge H \underline{B}_{(1,0)}$
$S^{6 \rho-1} \wedge H \underline{B}_{(3,2)}$	$S^{2 \rho-1} \wedge H \underline{B}_{(3,1)}$	$S^{1+2 \lambda(1)} \wedge H \underline{B}_{(2,0)}$

