The Adams-Novikov E_2 -term for Q(2) at the prime 3

Don Larson dml34@psu.edu

Penn State University, Altoona

Joint Mathematics Meetings - January 17, 2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation and construction of Q(2)

Computing the ANSS E_2 -term for Q(2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Some applications and directions

Motivation and construction of Q(2)

Computing the ANSS E_2 -term for Q(2)

Some applications and directions

The spectrum Q(2)

Theorem (Behrens 2006)

(a) At the prime 3, there exists an E_{∞} -ring spectrum Q(2), built using degree 2 isogenies of elliptic curves, with the property that

$$DQ(2) \xrightarrow{D\eta} S_{\mathcal{K}(2)} \xrightarrow{\eta} Q(2)$$

is a cofiber sequence.

(b) The Adams-Novikov E_2 -term for Q(2) is the target of a double cochain complex spectral sequence.

There exist spectra Q(N) that are K(2)-local at the prime p, so long as p is a topological generator of \mathbb{Z}_p^{\times} .

There exist spectra Q(N) that are K(2)-local at the prime p, so long as p is a topological generator of \mathbb{Z}_p^{\times} .

Theorem (Behrens 2009)

Let $p \ge 5$.

(a) Q(N) detects the homotopy elements $\alpha_{i,j}$ and $\beta_{i/j,k}$.

There exist spectra Q(N) that are K(2)-local at the prime p, so long as p is a topological generator of \mathbb{Z}_p^{\times} .

Theorem (Behrens 2009)

Let $p \ge 5$.

- (a) Q(N) detects the homotopy elements $\alpha_{i,j}$ and $\beta_{i/j,k}$.
- (b) There is a 1-1 correspondence between additive generators $\beta_{i/j,k} \in \operatorname{Ext}^2(BP_*)$ and modular forms $f_{i/j,k}$ of weight $2i(p^2-1)$ satisfying certain congruence conditions.

There exist spectra Q(N) that are K(2)-local at the prime p, so long as p is a topological generator of \mathbb{Z}_p^{\times} .

Theorem (Behrens 2009)

Let $p \ge 5$.

- (a) Q(N) detects the homotopy elements $\alpha_{i,j}$ and $\beta_{i/j,k}$.
- (b) There is a 1-1 correspondence between additive generators $\beta_{i/j,k} \in \operatorname{Ext}^2(BP_*)$ and modular forms $f_{i/j,k}$ of weight $2i(p^2-1)$ satisfying certain congruence conditions.

Conjecture

This holds at p = 3. [Different techniques are required.]

Q(2) as a modular interpretation

Theorem (Adams-Baird-Ravenel) At p = 2, $S_{K(1)} \simeq J \rightarrow KO_2^{\wedge} \xrightarrow{\psi^3 - 1} KO_2^{\wedge}$.

・ロト・日本・モート モー うへぐ

Q(2) as a modular interpretation

Theorem (Adams-Baird-Ravenel) At p = 2, $S_{K(1)} \simeq J \rightarrow KO_2^{\wedge} \xrightarrow{\psi^3 - 1} KO_2^{\wedge}$.

Theorem (Goerss-Henn-Mahowald-Rezk 2005) At p = 3, there is a resolution of the trivial \mathbb{G}_2 -module \mathbb{Z}_3 inducing

$$S_{\mathcal{K}(2)} \to X_1 \to X_2 \to X_3 \to X_4 \to X_5$$

which refines to a 4-stage tower of fibrations with $S_{K(2)}$ at the top.

Q(2) as a modular interpretation

Theorem (Adams-Baird-Ravenel) At p = 2, $S_{K(1)} \simeq J \rightarrow KO_2^{\wedge} \xrightarrow{\psi^3 - 1} KO_2^{\wedge}$.

Theorem (Goerss-Henn-Mahowald-Rezk 2005) At p = 3, there is a resolution of the trivial \mathbb{G}_2 -module \mathbb{Z}_3 inducing

$$S_{\mathcal{K}(2)} \to X_1 \to X_2 \to X_3 \to X_4 \to X_5$$

which refines to a 4-stage tower of fibrations with $S_{K(2)}$ at the top.

Remark

The X_i above are wedges of suspensions of $E_2^{hG_{24}} \simeq tmf$ and $E_2^{hD_8} \simeq tmf_0(2)$.

The definition of Q(2)

Motivated by the GHMR resolution, and by work of Mahowald-Rezk on a map

$$tmf \xrightarrow{"\psi^3 - 1"} tmf_0(3)$$

at the prime 2, Behrens constructed Q(2) as a semi-cosimplicial spectrum, as follows.

Definition

$$Q(2) = \mathsf{Tot}\left[\mathit{tmf} \Rightarrow \mathit{tmf} \lor \mathit{tmf}_0(2) \Rrightarrow \mathit{tmf}_0(2)\right]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Algebraic underpinnings of Q(2)

The key algebraic object is the Hopf algebroid (B, Γ) , where

$$B = \mathbb{Z}_{(3)}[q_2, q_4, \Delta^{-1}]/(\Delta = q_4^2(16q_2^2 - 64q_4)),$$

$$\Gamma = B[r]/(r^3 + q_2r^2 + q_4r).$$

Algebraic underpinnings of Q(2)

The key algebraic object is the Hopf algebroid (B, Γ) , where

$$B = \mathbb{Z}_{(3)}[q_2, q_4, \Delta^{-1}]/(\Delta = q_4^2(16q_2^2 - 64q_4)),$$

$$\Gamma = B[r]/(r^3 + q_2r^2 + q_4r).$$

Proposition The ANSS for tmf takes the form

$$\operatorname{Ext}^* := \operatorname{Ext}^*_{\Gamma}(B, B) \Rightarrow \pi_* tmf$$

while the ANSS for $tmf_0(2)$ collapses at E_2 to yield

 $\pi_{2k} tm f_0(2) = B_k.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Setting up the ANSS

The semi-cosimplicial diagram above topologically realizes

$$\mathcal{M} \Leftarrow \mathcal{M} \coprod \mathcal{M}_0(2) \Leftarrow \mathcal{M}_0(2).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Setting up the ANSS

The semi-cosimplicial diagram above topologically realizes

$$\mathcal{M} \Leftarrow \mathcal{M} \coprod \mathcal{M}_0(2) \Leftarrow \mathcal{M}_0(2).$$

Proposition (Behrens)

(a) The ANSS for Q(2) is $E_2^{s,t} = \mathbb{H}^{s,t}(\mathcal{M}_{\bullet}) \Rightarrow \pi_{2t-s}Q(2).$ (b) The last last f_{\bullet} is the formula of f_{\bullet} .

(b) The hypercohomology SS converging to this E₂-term is the double complex SS for C^{*,*}, given by

$$C^*(\Gamma) \to \overline{C}^*(\Gamma) \oplus B \to B \to 0.$$

The main theorem

Theorem (L.) $H^k(\text{Tot } C^{*,*}) = M_k \oplus N_k$, where

$$M_{k} = \begin{cases} \mathbb{Z}_{(3)}\{1_{MF}\}, & k = 0, 1\\ \mathsf{Ext}^{k} \oplus \mathsf{Ext}^{k-1}, & k \ge 1 \end{cases}$$

and

$$N_{k} = \begin{cases} \widetilde{N} \oplus \mathbb{Z}_{(3)}\{\alpha\} & k = 1\\ \text{coker } d_{2} & k = 2\\ 0 & \text{otherwise} \end{cases}$$

Here, d_2 is the only nontrivial differential on the E_2 -page of the double complex SS, \tilde{N} is a countable direct sum of cyclic $\mathbb{Z}_{(3)}$ -modules, and Ext* is torsion for $* \ge 1$ (T. Bauer).

The rational homotopy of Q(2)

Theorem (Behrens)

The rational homotopy of Q(2) is

$$\pi_{k}Q(2)\otimes\mathbb{Q} = \begin{cases} \bigoplus_{n}\mathbb{Q}, & k = -2\\ \mathbb{Q}\{1_{MF}\}\oplus\bigoplus_{n}\mathbb{Q}, & k = -1\\ \mathbb{Q}\{1_{MF}\}, & k = 0\\ 0, & otherwise \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation and construction of Q(2)

Computing the ANSS E_2 -term for Q(2)

Some applications and directions

The double cochain complex

Expanding $C^{*,*}$ yields

The ring of invariants of (B, Γ)

Lemma

$$\mathsf{Ext}^0 = \mathbb{Z}_{(3)}[c_4, c_6, \Delta, \Delta^{-1}]/(1728\Delta = c_4^3 - c_6^2) =: MF$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The ring of invariants of (B, Γ)

Lemma

$$\mathsf{Ext}^0 = \mathbb{Z}_{(3)}[c_4, c_6, \Delta, \Delta^{-1}]/(1728\Delta = c_4^3 - c_6^2) =: MF$$

Remark

The E_1 -page of the double complex SS becomes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

The maps Φ and Ψ

Let *C* denote the complex $MF \xrightarrow{\Phi} B \oplus MF \xrightarrow{\Psi} B$. The maps Φ and Ψ are explicitly known.

The maps Φ and Ψ

Let *C* denote the complex $MF \xrightarrow{\Phi} B \oplus MF \xrightarrow{\Psi} B$. The maps Φ and Ψ are explicitly known.

Example

The map $\psi_d : tmf_0(2) \to tmf_0(2)$ realizes $\psi_d : \mathcal{M}_0(2) \to \mathcal{M}_0(2)$ which, given a $\mathbb{Z}_{(3)}$ -algebra T, sends an elliptic curve E over T to E/H; the corresponding effect on Weierstrass equations determines that $\psi_d : B \to B$ is defined by

$$q_2\mapsto -2q_2, \quad q_4\mapsto -4q_4+q_2^2$$

and $\Psi = (\psi_d^* + 1) \oplus \gamma$ for $\gamma : MF \to B$.

The maps Φ and Ψ

Let *C* denote the complex $MF \xrightarrow{\Phi} B \oplus MF \xrightarrow{\Psi} B$. The maps Φ and Ψ are explicitly known.

Example

The map $\psi_d : tmf_0(2) \to tmf_0(2)$ realizes $\psi_d : \mathcal{M}_0(2) \to \mathcal{M}_0(2)$ which, given a $\mathbb{Z}_{(3)}$ -algebra T, sends an elliptic curve E over T to E/H; the corresponding effect on Weierstrass equations determines that $\psi_d : B \to B$ is defined by

$$q_2\mapsto -2q_2, \quad q_4\mapsto -4q_4+q_2^2$$

and $\Psi = (\psi_d^* + 1) \oplus \gamma$ for $\gamma : MF \to B$.

Notation

Let
$$\Phi(x) = (f(x), g(x))$$
 and $\Psi(y, z) = h(y) + k(z)$.

A two-stage filtration of C

We filter C as follows:

$$F^{0} = C,$$

$$F^{1} = (MF \xrightarrow{g} MF \rightarrow 0),$$

$$F^{2} = 0.$$

<□ > < @ > < E > < E > E のQ @

A two-stage filtration of C

We filter C as follows:

$$\begin{split} F^0 &= C, \\ F^1 &= (MF \xrightarrow{g} MF \to 0), \\ F^2 &= 0. \end{split}$$

This yields a SES of complexes

$$0 \to C' \to C \to C'' \to 0$$

where $C' = (0 \rightarrow B \xrightarrow{h} B)$ and $C'' = F^1$. We obtain a LES in cohomology

$$H^0C \hookrightarrow \ker g \xrightarrow{\delta^0} \ker h \to H^1C \to \operatorname{coker} g \xrightarrow{\delta^1} \operatorname{coker} h \twoheadrightarrow H^2C$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Example

If $x \in MF$ is a modular form of weight k, then

$$g(x) = (2^k - 1)x.$$

Example

If $x \in MF$ is a modular form of weight k, then

$$g(x) = (2^k - 1)x.$$

Proposition (L.)

coker g has as a direct summand

$$\bigoplus_{x} \mathbb{Z}/3^{\mu_3(k)+1}\mathbb{Z}$$

where x runs through elements of nonzero weight in an additive basis for MF.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation and construction of Q(2)

Computing the ANSS E_2 -term for Q(2)

Some applications and directions

A conjecture

Conjecture

Let F be the map between the Adams-Novikov E_2 -terms for the (K(2)-local) sphere and Q(2) induced by the unit map of Q(2). Then F detects the algebraic alpha and beta families.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The End

- Preprint in progress.
- See also On the homotopy of Q(3) and Q(5) at the prime 2 [Behrens-Ormsby]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The End

- Preprint in progress.
- ► See also On the homotopy of Q(3) and Q(5) at the prime 2 [Behrens-Ormsby]

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで