The Adams-Novikov E_{2}-term for $Q(2)$ at the prime 3

Don Larson
dml34@psu.edu

Penn State University, Altoona

Joint Mathematics Meetings - January 17, 2014

Motivation and construction of $Q(2)$

Computing the ANSS E_{2}-term for $Q(2)$

Some applications and directions

Motivation and construction of $Q(2)$

Computing the ANSS E_{2}-term for $Q(2)$

Some applications and directions

The spectrum $Q(2)$

Theorem (Behrens 2006)
(a) At the prime 3, there exists an E_{∞}-ring spectrum $Q(2)$, built using degree 2 isogenies of elliptic curves, with the property that

$$
D Q(2) \xrightarrow{D \eta} S_{K(2)} \xrightarrow{\eta} Q(2)
$$

is a cofiber sequence.
(b) The Adams-Novikov E_{2}-term for $Q(2)$ is the target of a double cochain complex spectral sequence.

Related theorems

There exist spectra $Q(N)$ that are $K(2)$-local at the prime p, so long as p is a topological generator of \mathbb{Z}_{p}^{\times}.

Related theorems

There exist spectra $Q(N)$ that are $K(2)$-local at the prime p, so long as p is a topological generator of \mathbb{Z}_{p}^{\times}.

Theorem (Behrens 2009)
Let $p \geqslant 5$.
(a) $Q(N)$ detects the homotopy elements $\alpha_{i, j}$ and $\beta_{i / j, k}$.

Related theorems

There exist spectra $Q(N)$ that are $K(2)$-local at the prime p, so long as p is a topological generator of \mathbb{Z}_{p}^{\times}.

Theorem (Behrens 2009)
Let $p \geqslant 5$.
(a) $Q(N)$ detects the homotopy elements $\alpha_{i, j}$ and $\beta_{i / j, k}$.
(b) There is a 1-1 correspondence between additive generators $\beta_{i / j, k} \in \operatorname{Ext}^{2}\left(B P_{*}\right)$ and modular forms $f_{i / j, k}$ of weight $2 i\left(p^{2}-1\right)$ satisfying certain congruence conditions.

Related theorems

There exist spectra $Q(N)$ that are $K(2)$-local at the prime p, so long as p is a topological generator of \mathbb{Z}_{p}^{\times}.

Theorem (Behrens 2009)
Let $p \geqslant 5$.
(a) $Q(N)$ detects the homotopy elements $\alpha_{i, j}$ and $\beta_{i / j, k}$.
(b) There is a 1-1 correspondence between additive generators $\beta_{i / j, k} \in \operatorname{Ext}^{2}\left(B P_{*}\right)$ and modular forms $f_{i / j, k}$ of weight $2 i\left(p^{2}-1\right)$ satisfying certain congruence conditions.

Conjecture

This holds at $p=3$. [Different techniques are required.]
$Q(2)$ as a modular interpretation
Theorem (Adams-Baird-Ravenel)
At $p=2, S_{K(1)} \simeq J \rightarrow K O_{\hat{2}} \xrightarrow{\psi^{3}-1} K O_{2}$.
$Q(2)$ as a modular interpretation

Theorem (Adams-Baird-Ravenel)
At $p=2, S_{K(1)} \simeq J \rightarrow K O_{2}^{\wedge} \xrightarrow{\psi^{3}-1} K O_{2}^{\wedge}$.

Theorem (Goerss-Henn-Mahowald-Rezk 2005)
At $p=3$, there is a resolution of the trivial \mathbb{G}_{2}-module \mathbb{Z}_{3} inducing

$$
S_{K(2)} \rightarrow X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow X_{4} \rightarrow X_{5}
$$

which refines to a 4-stage tower of fibrations with $S_{K(2)}$ at the top.

$Q(2)$ as a modular interpretation

Theorem (Adams-Baird-Ravenel)
At $p=2, S_{K(1)} \simeq J \rightarrow K O_{2}^{\wedge} \xrightarrow{\psi^{3}-1} K O_{2}^{\wedge}$.

Theorem (Goerss-Henn-Mahowald-Rezk 2005)
At $p=3$, there is a resolution of the trivial \mathbb{G}_{2}-module \mathbb{Z}_{3} inducing

$$
S_{K(2)} \rightarrow X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow X_{4} \rightarrow X_{5}
$$

which refines to a 4-stage tower of fibrations with $S_{K(2)}$ at the top.

Remark
The X_{i} above are wedges of suspensions of $E_{2}^{h G_{24}} \simeq t m f$ and $E_{2}^{h D_{8}} \simeq t m f_{0}(2)$.

The definition of $Q(2)$

Motivated by the GHMR resolution, and by work of Mahowald-Rezk on a map

$$
t m f \xrightarrow{" \psi^{3}-1 "} t m f_{0}(3)
$$

at the prime 2, Behrens constructed $Q(2)$ as a semi-cosimplicial spectrum, as follows.

Definition

$$
Q(2)=\operatorname{Tot}\left[t m f \Rightarrow t m f \vee t m f_{0}(2) \Rightarrow t m f_{0}(2)\right]
$$

Algebraic underpinnings of $Q(2)$

The key algebraic object is the Hopf algebroid (B, Γ), where

$$
\begin{aligned}
B & =\mathbb{Z}_{(3)}\left[q_{2}, q_{4}, \Delta^{-1}\right] /\left(\Delta=q_{4}^{2}\left(16 q_{2}^{2}-64 q_{4}\right)\right), \\
\Gamma & =B[r] /\left(r^{3}+q_{2} r^{2}+q_{4} r\right) .
\end{aligned}
$$

Algebraic underpinnings of $Q(2)$

The key algebraic object is the Hopf algebroid (B, Γ), where

$$
\begin{aligned}
B & =\mathbb{Z}_{(3)}\left[q_{2}, q_{4}, \Delta^{-1}\right] /\left(\Delta=q_{4}^{2}\left(16 q_{2}^{2}-64 q_{4}\right)\right), \\
\Gamma & =B[r] /\left(r^{3}+q_{2} r^{2}+q_{4} r\right) .
\end{aligned}
$$

Proposition

The ANSS for tmf takes the form

$$
\mathrm{Ext}^{*}:=\operatorname{Ext}_{\Gamma}^{*}(B, B) \Rightarrow \pi_{*} t m f
$$

while the ANSS for $\operatorname{tmf}_{0}(2)$ collapses at E_{2} to yield

$$
\pi_{2 k} t m f_{0}(2)=B_{k}
$$

Setting up the ANSS

The semi-cosimplicial diagram above topologically realizes

$$
\mathcal{M} \Leftarrow \mathcal{M} \coprod \mathcal{M}_{0}(2) \Leftarrow \mathcal{M}_{0}(2)
$$

Setting up the ANSS

The semi-cosimplicial diagram above topologically realizes

$$
\mathcal{M} \Leftarrow \mathcal{M} \coprod\left[\mathcal{M}_{0}(2) \Leftarrow \mathcal{M}_{0}(2)\right.
$$

Proposition (Behrens)
(a) The ANSS for $Q(2)$ is

$$
E_{2}^{s, t}=\mathbb{H}^{s, t}\left(\mathcal{M}_{\bullet}\right) \Rightarrow \pi_{2 t-s} Q(2)
$$

(b) The hypercohomology SS converging to this E_{2}-term is the double complex $S S$ for $C^{*, *}$, given by

$$
C^{*}(\Gamma) \rightarrow \bar{C}^{*}(\Gamma) \oplus B \rightarrow B \rightarrow 0
$$

The main theorem

Theorem (L.)
$H^{k}\left(\operatorname{Tot} C^{*, *}\right)=M_{k} \oplus N_{k}$, where

$$
M_{k}= \begin{cases}\mathbb{Z}_{(3)}\left\{1_{M F}\right\}, & k=0,1 \\ \mathrm{Ext}^{k} \oplus \mathrm{Ext}^{k-1}, & k \geqslant 1\end{cases}
$$

and

$$
N_{k}= \begin{cases}\tilde{N} \oplus \mathbb{Z}_{(3)}\{\alpha\} & k=1 \\ \operatorname{coker} d_{2} & k=2 \\ 0 & \text { otherwise }\end{cases}
$$

Here, d_{2} is the only nontrivial differential on the E_{2}-page of the double complex $S S, \widetilde{N}$ is a countable direct sum of cyclic $\mathbb{Z}_{(3)}$-modules, and Ext ${ }^{*}$ is torsion for $* \geqslant 1$ (T. Bauer).

The rational homotopy of $Q(2)$

Theorem (Behrens)
The rational homotopy of $Q(2)$ is

$$
\pi_{k} Q(2) \otimes \mathbb{Q}= \begin{cases}\bigoplus_{n} \mathbb{Q}, & k=-2 \\ \mathbb{Q}\left\{1_{M F}\right\} \oplus \bigoplus_{n} \mathbb{Q}, & k=-1 \\ \mathbb{Q}\left\{1_{M F}\right\}, & k=0 \\ 0, & \text { otherwise } .\end{cases}
$$

Motivation and construction of $Q(2)$

Computing the ANSS E_{2}-term for $Q(2)$

Some applications and directions

The double cochain complex

Expanding $C^{*, *}$ yields

The ring of invariants of (B, Γ)

Lemma

$$
\operatorname{Ext}^{0}=\mathbb{Z}_{(3)}\left[c_{4}, c_{6}, \Delta, \Delta^{-1}\right] /\left(1728 \Delta=c_{4}^{3}-c_{6}^{2}\right)=: M F
$$

The ring of invariants of (B, Γ)

Lemma

$$
\operatorname{Ext}^{0}=\mathbb{Z}_{(3)}\left[c_{4}, c_{6}, \Delta, \Delta^{-1}\right] /\left(1728 \Delta=c_{4}^{3}-c_{6}^{2}\right)=: M F
$$

Remark

The E_{1}-page of the double complex SS becomes

The maps Φ and Ψ

Let C denote the complex $M F \xrightarrow{\Phi} B \oplus M F \xrightarrow{\Psi} B$. The maps Φ and Ψ are explicitly known.

The maps Φ and Ψ

Let C denote the complex $M F \xrightarrow{\Phi} B \oplus M F \xrightarrow{\Psi} B$. The maps Φ and Ψ are explicitly known.

Example

The map $\psi_{d}: \operatorname{tmf}_{0}(2) \rightarrow \operatorname{tmf}_{0}(2)$ realizes $\psi_{d}: \mathcal{M}_{0}(2) \rightarrow \mathcal{M}_{0}(2)$ which, given a $\mathbb{Z}_{(3)}$-algebra T, sends an elliptic curve E over T to E / H; the corresponding effect on Weierstrass equations determines that $\psi_{d}: B \rightarrow B$ is defined by

$$
q_{2} \mapsto-2 q_{2}, \quad q_{4} \mapsto-4 q_{4}+q_{2}^{2}
$$

and $\Psi=\left(\psi_{d}^{*}+1\right) \oplus \gamma$ for $\gamma: M F \rightarrow B$.

The maps Φ and Ψ

Let C denote the complex $M F \xrightarrow{\Phi} B \oplus M F \xrightarrow{\Psi} B$. The maps Φ and Ψ are explicitly known.

Example

The map $\psi_{d}: \operatorname{tmf}_{0}(2) \rightarrow \operatorname{tmf}_{0}(2)$ realizes $\psi_{d}: \mathcal{M}_{0}(2) \rightarrow \mathcal{M}_{0}(2)$ which, given a $\mathbb{Z}_{(3)}$-algebra T, sends an elliptic curve E over T to E / H; the corresponding effect on Weierstrass equations determines that $\psi_{d}: B \rightarrow B$ is defined by

$$
q_{2} \mapsto-2 q_{2}, \quad q_{4} \mapsto-4 q_{4}+q_{2}^{2}
$$

and $\Psi=\left(\psi_{d}^{*}+1\right) \oplus \gamma$ for $\gamma: M F \rightarrow B$.

Notation
Let $\Phi(x)=(f(x), g(x))$ and $\Psi(y, z)=h(y)+k(z)$.

A two-stage filtration of C

We filter C as follows:

$$
\begin{aligned}
& F^{0}=C, \\
& F^{1}=(M F \stackrel{g}{\rightarrow} M F \rightarrow 0), \\
& F^{2}=0 .
\end{aligned}
$$

A two-stage filtration of C

We filter C as follows:

$$
\begin{aligned}
& F^{0}=C, \\
& F^{1}=(M F \xrightarrow{g} M F \rightarrow 0), \\
& F^{2}=0 .
\end{aligned}
$$

This yields a SES of complexes

$$
0 \rightarrow C^{\prime} \rightarrow C \rightarrow C^{\prime \prime} \rightarrow 0
$$

where $C^{\prime}=(0 \rightarrow B \xrightarrow{h} B)$ and $C^{\prime \prime}=F^{1}$. We obtain a LES in cohomology

$$
H^{0} C \hookrightarrow \operatorname{ker} g \xrightarrow{\delta^{0}} \operatorname{ker} h \rightarrow H^{1} C \rightarrow \operatorname{coker} g \xrightarrow{\delta^{1}} \operatorname{coker} h \rightarrow H^{2} C
$$

Example

If $x \in M F$ is a modular form of weight k, then

$$
g(x)=\left(2^{k}-1\right) x
$$

Example

If $x \in M F$ is a modular form of weight k, then

$$
g(x)=\left(2^{k}-1\right) x
$$

Proposition (L.)

coker g has as a direct summand

$$
\bigoplus_{x} \mathbb{Z} / 3^{\mu_{3}(k)+1} \mathbb{Z}
$$

where x runs through elements of nonzero weight in an additive basis for MF.

Motivation and construction of $Q(2)$

Computing the ANSS E_{2}-term for $Q(2)$

Some applications and directions

A conjecture

Conjecture

Let F be the map between the Adams-Novikov E_{2}-terms for the $(K(2)$-local) sphere and $Q(2)$ induced by the unit map of $Q(2)$. Then F detects the algebraic alpha and beta families.

The End

- Preprint in progress.
- See also On the homotopy of $Q(3)$ and $Q(5)$ at the prime 2 [Behrens-Ormsby]

The End

- Preprint in progress.
- See also On the homotopy of $Q(3)$ and $Q(5)$ at the prime 2 [Behrens-Ormsby]

Thank you!

