On certain tertiary homotopy operations

Howard J. Marcum

The Ohio State University at Newark

January 16, 2014

• on background

- on background
- Toda brackets and other secondary topological operations

- on background
- Toda brackets and other secondary topological operations
- secondary operations in a 2-category with zeros

- on background
- Toda brackets and other secondary topological operations
- secondary operations in a 2-category with zeros
- tertiary topological operations

Homotopy groups of spheres

• Study the groups $\pi_k S^n$, $k \ge 1$, $n \ge 0$

Homotopy groups of spheres

- Study the groups $\pi_k S^n$, $k \ge 1$, $n \ge 0$
- We say $\pi_{n+k}S^n$ is stable if n > k+1 "sphere of origin > stem +1"

Homotopy groups of spheres

- Study the groups $\pi_k S^n$, $k \ge 1$, $n \ge 0$
- We say $\pi_{n+k}S^n$ is stable if n > k+1 "sphere of origin > stem +1"
- in which case by a Theorem of Freudenthal $\pi_{n+k}S^n\cong\pi_{n+k+1}S^{n+1}\cong\pi_{n+k+2}S^{n+2}\cong\cdots$ defining "the stable k-stem" π_k^S

• $\pi_k S^n = 0$ if k < n

- $\pi_k S^n = 0$ if k < n
- $\pi_n S^n = \mathbb{Z}$ if $n \geq 1$

- $\pi_k S^n = 0$ if k < n
- $\pi_n S^n = \mathbb{Z}$ if $n \geq 1$
- if n is odd, k > n, then $\pi_k S^n$ is a finite group

- $\pi_k S^n = 0$ if k < n
- $\pi_n S^n = \mathbb{Z}$ if $n \geq 1$
- if n is odd, k > n, then $\pi_k S^n$ is a finite group
- if n is even, k > n, and $k \neq 2n-1$ then $\pi_k S^n$ is a finite group

- $\pi_k S^n = 0$ if k < n
- $\pi_n S^n = \mathbb{Z}$ if $n \geq 1$
- if n is odd, k > n, then $\pi_k S^n$ is a finite group
- if n is even, k > n, and $k \neq 2n-1$ then $\pi_k S^n$ is a finite group
- if *n* is even then $\pi_{2n-1}S^n \cong \mathbb{Z} \oplus (a \text{ finite group})$

- $\pi_k S^n = 0$ if k < n
- $\pi_n S^n = \mathbb{Z}$ if $n \geq 1$
- if n is odd, k > n, then $\pi_k S^n$ is a finite group
- if n is even, k > n, and $k \neq 2n-1$ then $\pi_k S^n$ is a finite group
- if *n* is even then $\pi_{2n-1}S^n \cong \mathbb{Z} \oplus (a \text{ finite group})$
- occasionally stable stems are trivial:

$$\pi_4^{\mathcal{S}} = 0, \ \pi_5^{\mathcal{S}} = 0, \ \pi_{12}^{\mathcal{S}} = 0, \ \pi_{29}^{\mathcal{S}} = 0$$

• compositions $\alpha \circ \beta$ $S^m \xrightarrow{\beta} S^k \xrightarrow{\alpha} S^n$

• compositions $\alpha \circ \beta$

$$S^m \xrightarrow{\beta} S^k \xrightarrow{\alpha} S^n$$

ullet suspensions ${\it E} lpha$

$$S^k \xrightarrow{\alpha} S^n \qquad \leadsto \qquad S^{k+1} \xrightarrow{E\alpha} S^{n+1}$$

- compositions $\alpha \circ \beta$ $S^m \xrightarrow{\beta} S^k \xrightarrow{\alpha} S^n$
- suspensions $E\alpha$ $S^{k} \xrightarrow{\alpha} S^{n} \qquad \bowtie \qquad S^{k+1} \xrightarrow{E\alpha} S^{n+1}$
- Whitehead products $[\alpha, \beta]$ $S^{j+k-1} \xrightarrow{W} S^j \vee S^k \xrightarrow{\alpha \bigtriangledown \beta} S^n$

- compositions $\alpha \circ \beta$ $S^m \xrightarrow{\beta} S^k \xrightarrow{\alpha} S^n$
- suspensions $E\alpha$ $S^{k} \xrightarrow{\alpha} S^{n} \qquad \bowtie \qquad S^{k+1} \xrightarrow{E\alpha} S^{n+1}$
- Whitehead products $[\alpha, \beta]$ $S^{j+k-1} \xrightarrow{W} S^j \vee S^k \xrightarrow{\alpha \nabla \beta} S^n$
- Toda brackets (secondary compositions) $\{\alpha, \beta, \gamma\}$ $S^p \xrightarrow{\gamma} S^m \xrightarrow{\beta} S^k \xrightarrow{\alpha} S^n$ $\{\alpha, \beta, \gamma\} \subset \pi_{p+1} S^n$ is defined if $\alpha \circ \beta \simeq 0$ and $\beta \circ \gamma \simeq o$

 $\{a, f, w\}$ is defined if $a \circ f \simeq o$ and $f \circ w \simeq o$

• indeterminacy of $\{a, f, w\}$ is $a \circ \pi(\Sigma W, A) + \pi(\Sigma C, X) \circ \Sigma w$

 $\{a, f, w\}$ is defined if $a \circ f \simeq o$ and $f \circ w \simeq o$

- indeterminacy of $\{a, f, w\}$ is $a \circ \pi(\Sigma W, A) + \pi(\Sigma C, X) \circ \Sigma w$
- explicit definition:

for
$$z \in W$$
, $[z,t] \mapsto \begin{cases} H(w(z),2t), & \text{if } 0 \leq t \leq \frac{1}{2} \\ aK(z,2-2t), & \text{if } \frac{1}{2} \leq t \leq 1 \end{cases}$

 $\{a, f, w\}$ is defined if $a \circ f \simeq o$ and $f \circ w \simeq o$

- indeterminacy of $\{a, f, w\}$ is $a \circ \pi(\Sigma W, A) + \pi(\Sigma C, X) \circ \Sigma w$
- explicit definition:

for
$$z \in W$$
, $[z,t] \mapsto \begin{cases} H(w(z),2t), & \text{if } 0 \leq t \leq \frac{1}{2} \\ aK(z,2-2t), & \text{if } \frac{1}{2} \leq t \leq 1 \end{cases}$

• Toda (1952) showed that $\nu' \in \{\eta_3, 2\iota_4, \eta_4\} \subset \pi_6 S^3 = \mathbb{Z}/12$ has order 4, with indeterminacy $\mathbb{Z}/2$. This was the first nontrivial Toda bracket computed.

ullet if $a\circ b\simeq o$ and $b\circ c\simeq o$ then generally

$$f \circ \{a, b, c\} \subset \{f \circ a, b, c\}$$

 $\{a, b, c\} \circ Eg \subset \{a, b, c \circ g\}$

• if $a \circ b \simeq o$ and $b \circ c \simeq o$ then generally

$$f \circ \{a, b, c\} \subset \{f \circ a, b, c\}$$
$$\{a, b, c\} \circ Eg \subset \{a, b, c \circ g\}$$

• More useful is Toda's Lemma: if $a_0 \circ a_1 \simeq o$, $a_1 \circ a_2 \simeq o$, $a_2 \circ a_3 \simeq o$ then $a_0 \circ \{a_1, a_2, a_3\} = -\{a_0, a_1, a_2\} \circ Ea_3$

• if $a \circ b \simeq o$ and $b \circ c \simeq o$ then generally

$$f \circ \{a, b, c\} \subset \{f \circ a, b, c\}$$
$$\{a, b, c\} \circ Eg \subset \{a, b, c \circ g\}$$

• More useful is Toda's Lemma: if $a_0 \circ a_1 \simeq o$, $a_1 \circ a_2 \simeq o$, $a_2 \circ a_3 \simeq o$ then $a_0 \circ \{a_1, a_2, a_3\} = -\{a_0, a_1, a_2\} \circ Ea_3$

• the equality in Toda's Lemma gives rise to a *quaternary Toda* bracket
$$\{a_0, a_1, a_2, a_3\}$$
. This is a tertiary operation (raising stem dimension by 2). Toda made mention of the operation in an announcement (C.R. Paris 1955); it was developed by \widehat{O} guchi (1963). The definition requires a coherence condition and is obscure and technically difficult.

• if $a \circ b \simeq o$ and $b \circ c \simeq o$ then generally

$$f \circ \{a, b, c\} \subset \{f \circ a, b, c\}$$
$$\{a, b, c\} \circ Eg \subset \{a, b, c \circ g\}$$

• More useful is Toda's Lemma: if $a_0 \circ a_1 \simeq o$, $a_1 \circ a_2 \simeq o$, $a_2 \circ a_3 \simeq o$ then

$$a_0 \circ \{a_1, a_2, a_3\} = -\{a_0, a_1, a_2\} \circ Ea_3$$

- the equality in Toda's Lemma gives rise to a quaternary Toda bracket {a₀, a₁, a₂, a₃}. This is a tertiary operation (raising stem dimension by 2). Toda made mention of the operation in an announcement (C.R. Paris 1955); it was developed by Oguchi (1963). The definition requires a coherence condition and is obscure and technically difficult.
- the quaternary Toda bracket is needed in the 9-stem to describe one of the generators in

$$\pi_{12}S^3 = (\mathbb{Z}/2)^2 = \{\mu_3\} \oplus \{\eta_3 \circ \varepsilon_4\}.$$

Namely,
$$\mu_3 \in \{\eta_3, E\nu', 8\iota_7, \nu_7\} = \mu_3 + \{\eta_3 \circ \varepsilon_4\}.$$

EHP sequence

The following sequence is called the *EHP* sequence

$$\cdots \longrightarrow \pi_k S^n \xrightarrow{E} \pi_{k+1} S^{n+1} \xrightarrow{H} \pi_{k+1} S^{2n+1} \xrightarrow{P} \pi_{k-1} S^n \xrightarrow{E} \cdots$$

where

E = suspension homomorphism

H = Hopf invariant

P is related to the Whitehead product

This sequence is

- exact if n is odd and k < 3n 3 and
- exact on 2-primary components if k > 2n.

The box bracket operation (Hardie-Marcum-Oda, 2001)

The box bracket operation (Hardie-Marcum-Oda, 2001)

ullet an element of \mathcal{L}_2 is of the form

$$-bK + Gw + aF + Hh: o \Rightarrow o: W \rightarrow X$$

The box bracket operation (Hardie-Marcum-Oda, 2001)

• an element of \mathcal{L}_2 is of the form

$$-bK + Gw + aF + Hh: o \Rightarrow o: W \rightarrow X$$

• the Toda brackets $\{a, u, h\}$, $\{a, f, w\}$ and $\{b, g, w\}$ need not be defined!!

•
$$\mathcal{L}_2 \left(\begin{array}{c} W \stackrel{w}{\Rightarrow} C \longrightarrow * \\ \downarrow & \forall f & \downarrow \\ * \longrightarrow A \stackrel{\rightarrow}{\Rightarrow} X \end{array} \right) = -\{a, f, w\}$$

$$\bullet \ \mathcal{L}_2 \left(\begin{array}{c} W \stackrel{w}{\Rightarrow} C \longrightarrow * \\ \downarrow & \downarrow f & \downarrow \\ * \longrightarrow A \stackrel{>}{\Rightarrow} X \end{array} \right) = -\{a, f, w\}$$

$$\bullet \ \mathcal{L}_{2} \left(\begin{array}{ccc} W \stackrel{w}{\rightarrow} C \stackrel{g}{\rightarrow} B \\ \downarrow & \downarrow & \downarrow b \\ * \longrightarrow * \longrightarrow X \end{array} \right) = \{b, g, w\} = \mathcal{L}_{2} \left(\begin{array}{ccc} W \longrightarrow * \longrightarrow * \\ w \psi & \psi & \psi \\ C \stackrel{\Rightarrow}{\rightarrow} B \stackrel{\Rightarrow}{\rightarrow} X \end{array} \right)$$

$$\bullet \ \mathcal{L}_2 \left(\begin{array}{c} W \stackrel{w}{\Rightarrow} C \longrightarrow * \\ \downarrow \qquad \downarrow f \qquad \downarrow \\ * \longrightarrow A \stackrel{\rightarrow}{\Rightarrow} X \end{array} \right) = -\{a, f, w\}$$

•
$$\mathcal{L}_{2}$$
 $\begin{pmatrix} w \stackrel{w}{\rightarrow} C \stackrel{g}{\rightarrow} B \\ \downarrow & \downarrow & \downarrow b \\ * \rightarrow * \rightarrow X \end{pmatrix} = \{b, g, w\} = \mathcal{L}_{2} \begin{pmatrix} w \rightarrow * \rightarrow * \\ w \downarrow & \downarrow & \downarrow \\ C \stackrel{\Rightarrow}{\rightarrow} B \stackrel{\Rightarrow}{\rightarrow} X \end{pmatrix}$

$$\bullet \ \mathcal{L}_{2} \left(\begin{array}{c} W \stackrel{w}{\Rightarrow} C \stackrel{\rightarrow}{\Rightarrow} * \\ h \downarrow & \forall f & \downarrow \\ U \stackrel{\rightarrow}{\Rightarrow} A \stackrel{\rightarrow}{\Rightarrow} X \end{array} \right) = \left\{ a, \begin{array}{c} f, & w \\ u, & h \end{array} \right\}$$

Barratt (1963), Mimura (1964)

$$\bullet \ \mathcal{L}_2 \left(\begin{array}{c} W \stackrel{w}{\Rightarrow} C \longrightarrow * \\ \downarrow \qquad \downarrow f \qquad \downarrow \\ * \longrightarrow A \stackrel{\rightarrow}{\Rightarrow} X \end{array} \right) = -\{a, f, w\}$$

•
$$\mathcal{L}_{2}$$
 $\begin{pmatrix} w \stackrel{w}{\rightarrow} C \stackrel{g}{\rightarrow} B \\ \downarrow & \downarrow & \downarrow b \\ * \rightarrow * ? X \end{pmatrix} = \{b, g, w\} = \mathcal{L}_{2} \begin{pmatrix} w \Rightarrow * \Rightarrow * \\ w \downarrow & \downarrow & \downarrow \\ C \stackrel{\Rightarrow}{\rightarrow} B \stackrel{\Rightarrow}{\rightarrow} X \end{pmatrix}$

$$\bullet \ \mathcal{L}_{2} \left(\begin{array}{c} W \stackrel{w}{\Rightarrow} C \stackrel{\rightarrow}{\Rightarrow} * \\ h \downarrow & \forall f & \downarrow \\ U \stackrel{\rightarrow}{\rightarrow} A \stackrel{\rightarrow}{\Rightarrow} X \end{array} \right) = \left\{ a, \begin{array}{c} f, & w \\ u, & h \end{array} \right\}$$

Barratt (1963), Mimura (1964)

$$\bullet \ \mathcal{L}_{2} \left(\begin{array}{c} W \stackrel{w}{\rightarrow} C \stackrel{g}{\rightarrow} B \\ \downarrow \qquad \downarrow f \qquad \downarrow b \\ * \rightarrow A \stackrel{?}{\rightarrow} X \end{array} \right) = \left\{ \begin{array}{c} b \\ a \end{array}, \begin{array}{c} g \\ f \end{array}, \begin{array}{c} w \end{array} \right\}$$

Mori(1971, stably), Hardie-Kamps-Marcum (1991)

Definition of a 2-category ${\cal C}$

• objects X1-morphisms $X \xrightarrow{f} Y$ 2-morphisms $X \xrightarrow{f} Y$

Definition of a 2-category $\mathcal C$

• objects X1-morphisms $X \xrightarrow{f} Y$ 2-morphisms $X \xrightarrow{f} Y$

 there are two composition operations horizontal composition ·
 vertical composition +

Definition of a 2-category \mathcal{C}

• objects X

1-morphisms
$$X \stackrel{f}{\longrightarrow} Y$$

- there are two composition operations horizontal composition · vertical composition +
- Interchange Law is valid:

$$(G'\cdot G)+(F'\cdot F)=(G'+F')\cdot (G+F)$$

Definition of a 2-category ${\cal C}$

• objects X

1-morphisms
$$X \stackrel{f}{\longrightarrow} Y$$

2-morphisms
$$X = \begin{cases} f \\ g \end{cases}$$

- there are two composition operations horizontal composition ·
 vertical composition +
- Interchange Law is valid:

$$(G'\cdot G)+(F'\cdot F)=(G'+F')\cdot (G+F)$$

• Example: Top_*

objects: based topological spaces X

1-morphisms: continuous based maps $X \stackrel{f}{\longrightarrow} Y$

2-morphisms: track classes of based topological homotopies

• A 2-category $\mathcal C$ has zeros if $\mathcal C(*,X)$ and $\mathcal C(X,*)$ are each the one object category for all objects X

- A 2-category $\mathcal C$ has zeros if $\mathcal C(*,X)$ and $\mathcal C(X,*)$ are each the one object category for all objects X
- the composite $X \longrightarrow * \longrightarrow Y$ defines the zero 1-morphism (or map) $o: X \to Y$

- A 2-category $\mathcal C$ has zeros if $\mathcal C(*,X)$ and $\mathcal C(X,*)$ are each the one object category for all objects X
- the composite $X \longrightarrow * \longrightarrow Y$ defines the zero 1-morphism (or map) $o: X \longrightarrow Y$
- $1_o: o \Rightarrow o$ denotes the identity 2-morphism on the zero map

- A 2-category $\mathcal C$ has zeros if $\mathcal C(*,X)$ and $\mathcal C(X,*)$ are each the one object category for all objects X
- the composite $X \longrightarrow * \longrightarrow Y$ defines the zero 1-morphism (or map) $o: X \to Y$
- 1_o : $o \Rightarrow o$ denotes the identity 2-morphism on the zero map
- There is an associated homotopy category $H\mathcal{C}$ $f,g\colon X\to y$ are homotopic if there exists an invertible 2-morphism $f\Rightarrow g$ we refer to invertible 2-morphisms as homotopies; [f] denotes the homotopy classes of f in $H\mathcal{C}$

- A 2-category $\mathcal C$ has zeros if $\mathcal C(*,X)$ and $\mathcal C(X,*)$ are each the one object category for all objects X
- the composite $X \longrightarrow * \longrightarrow Y$ defines the zero 1-morphism (or map) $o: X \to Y$
- 1_o : $o \Rightarrow o$ denotes the identity 2-morphism on the zero map
- There is an associated homotopy category $H\mathcal{C}$ $f,g\colon X\to y$ are homotopic if there exists an invertible 2-morphism $f\Rightarrow g$ we refer to invertible 2-morphisms as homotopies; [f] denotes the homotopy classes of f in $H\mathcal{C}$
- The set of all invertible self 2-morphisms of a 1-morphism f
 will be denoted

$$\mathcal{A}_{\mathcal{C}}(f\colon X\to Y):=\left\{\begin{array}{c|c} x & f \\ \hline & f \end{array} \mid F \text{ is invertible} \right\}$$

and is a group under vertical composition of 2-morphisms. The group identity is 1_f .

Suspension 2-functor

Let $\mathcal C$ be a 2-category with zeros and $\Sigma\colon\mathcal C\to\mathcal C$ a 2-functor preserving zeros. For each object X of $\mathcal C$ let there be assigned an invertible 2-morphism

$$X \underbrace{\Downarrow D_X}_{o} \Sigma X$$

which is natural in X. Then for each pair of objects (X, Y) there is an induced function

$$\varphi = \varphi_{(X,Y)} \colon \mathrm{H}\mathcal{C}(\Sigma X, Y) \to \mathcal{A}_{\mathcal{C}}(o \colon X \to Y)$$

given by

$$\alpha \colon \Sigma X \to Y \quad \mapsto \quad X \underbrace{\psi \alpha D_X}_{o} Y$$

If φ is a bijection for all pairs (X,Y) then Σ is called a *suspension* 2 functor

The 2-sided matrix Toda bracket

Let C be a 2-category with zeros.

It is defined if $a \circ f \simeq b \circ g$, $g \circ w \simeq o$ and $s \circ a \simeq o$. It consists of all 2-morphisms of the form

$$-(s \circ b)K + sFw + H(f \circ w): o \Rightarrow o: W \rightarrow Y$$

for homotopies $H: o \Rightarrow s \circ a$, $F: a \circ f \Rightarrow b \circ g$ and $K: o \Rightarrow g \circ w$.

The 2-sided matrix Toda bracket

Let C be a 2-category with zeros.

$$\begin{array}{ccc}
\vdots & & & & \\
& & \downarrow & & \\
& & \downarrow & & \downarrow b \\
& & & A \xrightarrow{a} X \xrightarrow{s} Y
\end{array}
\right) \subset \mathcal{A}_{\mathcal{C}}(o: W \to Y)$$

It is defined if $a \circ f \simeq b \circ g$, $g \circ w \simeq o$ and $s \circ a \simeq o$. It consists of all 2-morphisms of the form

$$-(s \circ b)K + sFw + H(f \circ w): o \Rightarrow o: W \rightarrow Y$$

for homotopies $H: o \Rightarrow s \circ a$, $F: a \circ f \Rightarrow b \circ g$ and $K: o \Rightarrow g \circ w$.

• If both $f \circ w \simeq o$ and $s \circ b \simeq o$ then

$$s \circ \left\{ \begin{array}{l} b \\ a \end{array}, \begin{array}{l} g \\ f \end{array}, \begin{array}{l} w \end{array} \right\} = \stackrel{\cdot}{\bigsqcup} \left(\begin{array}{c} w \xrightarrow{w} c \xrightarrow{g} B \\ f \downarrow & \downarrow b \\ A \xrightarrow{a} X \xrightarrow{s} Y \end{array} \right) = \left\{ \begin{array}{l} s \\ a \end{array}, \begin{array}{l} g \\ f \end{array} \right\} \circ w.$$

This is a generalization of Toda's Lemma.

Let C be a 2-category with zeros. Let

be a 3-box diagram of 1-morphisms in C. Then $f_0 \circ \{a_1, a_2, a_3\}$ and $\{b_1, b_2, b_3\} \circ f_3$ are each contained in the same double coset of the subgroups $b_1 \circ \mathcal{A}_{\mathcal{C}}(o:A_3 \to B_1)$ and $\mathcal{A}_{\mathcal{C}}(o:A_2 \to B_0) \circ a_3$ of the group $A_{\mathcal{C}}(o: A_3 \to B_0)$. Consequently, letting this double coset be denoted by

$$\gamma \left(\begin{array}{ccc} A_3 \stackrel{a_3}{\longrightarrow} A_2 \stackrel{a_2}{\longrightarrow} A_1 \stackrel{a_1}{\longrightarrow} A_0 \\ f_3 \downarrow & \downarrow f_2 & \downarrow f_1 & \downarrow f_0 \\ B_3 \stackrel{a_3}{\longrightarrow} B_2 \stackrel{a_2}{\longrightarrow} B_1 \stackrel{a_1}{\longrightarrow} B_0 \end{array} \right) \subset \mathcal{A}_{\mathcal{C}}(o:A_3 \to B_0)$$

an operation associated to the 3-hox diagram is obtained Howard J. Marcum

The inclusion

$$\begin{array}{c}
\vdots \\
A_3 \stackrel{a_3}{\Rightarrow} A_2 \stackrel{a_2}{\Rightarrow} A_1 \\
f_2 \downarrow \qquad \downarrow f_1 \\
B_2 \stackrel{a_3}{\Rightarrow} B_1 \stackrel{a_2}{\Rightarrow} B_0
\end{array}
\right) \subset \gamma \left(\begin{array}{c}
A_3 \stackrel{a_3}{\Rightarrow} A_2 \stackrel{a_2}{\Rightarrow} A_1 \stackrel{a_1}{\Rightarrow} A_0 \\
f_3 \downarrow \qquad \downarrow f_2 \qquad \downarrow f_1 \qquad \downarrow f_0 \\
B_3 \stackrel{a_3}{\Rightarrow} B_2 \stackrel{a_2}{\Rightarrow} B_1 \stackrel{a_1}{\Rightarrow} B_0
\end{array}\right)$$

holds in $\mathcal{A}_{\mathcal{C}}(o:A_3\to B_0)$.

The inclusion

$$\begin{array}{c}
\vdots \\
A_3 \stackrel{a_3}{\Rightarrow} A_2 \stackrel{a_2}{\Rightarrow} A_1 \\
f_2 \downarrow \qquad \downarrow f_1 \\
B_2 \stackrel{\rightarrow}{\Rightarrow} B_1 \stackrel{\rightarrow}{\Rightarrow} B_0
\end{array}
\right) \subset \gamma \left(\begin{array}{ccc}
A_3 \stackrel{a_3}{\Rightarrow} A_2 \stackrel{a_2}{\Rightarrow} A_1 \stackrel{a_1}{\Rightarrow} A_0 \\
f_3 \downarrow \qquad \downarrow f_2 \qquad \downarrow f_1 \qquad \downarrow f_0 \\
B_3 \stackrel{\rightarrow}{\Rightarrow} B_2 \stackrel{\rightarrow}{\Rightarrow} B_1 \stackrel{\rightarrow}{\Rightarrow} B_0
\end{array}\right)$$

holds in $\mathcal{A}_{\mathcal{C}}(o:A_3\to B_0)$.

ullet Inclusion can be proper; e.g., the 3-box diagram in $H\mathcal{T}\mathit{op}_*$

$$S^{21} \xrightarrow{\nu_{15}^2} S^{15} \xrightarrow{\varepsilon_7} S^7 \xrightarrow{2\iota_7} S^7$$

$$\eta_{20} \downarrow \qquad \qquad \downarrow \nu_{12} \qquad \downarrow \eta_5^2 \qquad \downarrow E\nu'$$

$$S^{20} \xrightarrow{\overline{\nu}_{12}} S^{12} \xrightarrow{\sigma'''} S^5 \xrightarrow{\eta_4} S^4$$

has
$$\overline{} = 0$$
 in $\pi_{22}S^4$ while
$$\gamma = \{ \eta_4 \circ \overline{\mu}_5, 2E\mu' \circ \sigma_{15}, E\nu' \circ \overline{\varepsilon}_7 \} \cong (\mathbb{Z}/2)^3.$$

Split 2-box diagrams

A homotopy commutative diagram of 1-morphisms with $a_1 \circ a_2 \simeq o$ and $b_2 \circ b_2 \simeq o$ in a 2-category $\mathcal C$ with zeros is said to be a *split* 2-box diagram.

Split 2-box diagrams

A homotopy commutative diagram of 1-morphisms with $a_1 \circ a_2 \simeq o$ and $b_2 \circ b_2 \simeq o$ in a 2-category $\mathcal C$ with zeros is said to be a *split* 2-box diagram.

$\mathsf{Theorem}$

The inclusion

$$\frac{\cdot}{\cdot} \left(\begin{array}{ccc}
A_2 \stackrel{a_2}{\Rightarrow} A_1 \stackrel{a_1}{\Rightarrow} A_0 \\
s_1 \psi & \psi s_0 \\
B_2 \stackrel{\rightarrow}{\Rightarrow} B_1 \stackrel{\rightarrow}{\Rightarrow} B_0 \\
B_2 \stackrel{\rightarrow}{\Rightarrow} B_1 \stackrel{\rightarrow}{\Rightarrow} B_0
\end{array} \right) \subset \mathcal{L}_2 \left(\begin{array}{ccc}
A_2 \stackrel{a_2}{\Rightarrow} A_1 \stackrel{a_1}{\Rightarrow} A_0 \\
f_2 \psi & \psi f_1 & \psi f_0 \\
B_2 \stackrel{\rightarrow}{\Rightarrow} B_1 \stackrel{\rightarrow}{\Rightarrow} B_0 \\
B_2 \stackrel{\rightarrow}{\Rightarrow} B_1 \stackrel{\rightarrow}{\Rightarrow} B_0
\end{array} \right)$$

is valid as subsets of $\mathcal{A}_{\mathcal{C}}(o: A_2 \to B_0)$

Theorem. Assume that $\mathcal{A}_{\mathcal{C}}(o:A_3\to B_0)$ is abelian. Then the following hold.

•

$$\gamma \left(\begin{array}{ccc} A_3 \stackrel{a_3}{\longrightarrow} A_2 \stackrel{a_2}{\longrightarrow} A_1 \stackrel{a_1}{\longrightarrow} A_0 \\ f_3 \downarrow & \downarrow f_2 & \downarrow f_1 & \downarrow f_0 \\ B_3 \stackrel{\rightarrow}{\longrightarrow} B_2 \stackrel{\rightarrow}{\longrightarrow} B_1 \stackrel{\rightarrow}{\longrightarrow} B_0 \end{array} \right) = \mathcal{L}_2 \left(\begin{array}{ccc} A_3 \stackrel{a_3}{\longrightarrow} A_2 \stackrel{a_2}{\longrightarrow} A_1 \\ b_3 \circ f_3 \downarrow & \downarrow f_1 \circ a_2 & \downarrow f_0 \circ a_1 \\ B_2 \stackrel{\rightarrow}{\longrightarrow} B_1 \stackrel{\rightarrow}{\longrightarrow} B_0 \end{array} \right)$$

Theorem. Assume that $A_{\mathcal{C}}(o: A_3 \to B_0)$ is abelian. Then the following hold.

0

$$\gamma \left(\begin{array}{ccc} A_3 \stackrel{a_3}{\longrightarrow} A_2 \stackrel{a_2}{\longrightarrow} A_1 \stackrel{a_1}{\longrightarrow} A_0 \\ f_3 \downarrow & \downarrow f_2 & \downarrow f_1 & \downarrow f_0 \\ B_3 \stackrel{\rightarrow}{\longrightarrow} B_2 \stackrel{\rightarrow}{\longrightarrow} B_1 \stackrel{\rightarrow}{\longrightarrow} B_0 \end{array} \right) = \mathcal{L}_2 \left(\begin{array}{ccc} A_3 \stackrel{a_3}{\longrightarrow} A_2 \stackrel{a_2}{\longrightarrow} A_1 \\ b_3 \circ f_3 \downarrow & \downarrow f_1 \circ a_2 & \downarrow f_0 \circ a_1 \\ B_2 \stackrel{\rightarrow}{\longrightarrow} B_1 \stackrel{\rightarrow}{\longrightarrow} B_0 \end{array} \right)$$

If

$$A_{2} \xrightarrow{a_{2}} A_{1} \xrightarrow{a_{1}} A_{0}$$

$$f_{2} \downarrow \qquad \qquad \qquad \downarrow f_{1} \downarrow \qquad \qquad \downarrow f_{0}$$

$$B_{2} \xrightarrow{b_{2}} B_{1} \xrightarrow{b_{1}} B_{0}$$

is a split 2-box diagram then

$$\mathcal{L}_{2}\left(\begin{array}{ccc} A_{2}\overset{a_{2}}{\Rightarrow}A_{1}\overset{a_{1}}{\Rightarrow}A_{0}\\ f_{2}\psi&\forall\,f_{1}&\forall\,f_{0}\\ B_{2}\overset{a_{2}}{\Rightarrow}B_{1}\overset{a_{1}}{\Rightarrow}B_{0} \end{array}\right)=\gamma\left(\begin{array}{ccc} A_{2}\overset{a_{2}}{\Rightarrow}A_{1}\overset{a_{1}}{\Rightarrow}A_{0}\overset{f_{0}}{\Rightarrow}B_{0}\\ \mathrm{id}\psi&\forall\,s_{1}&\forall\,s_{0}&\forall\,\mathrm{id}\\ A_{2}\overset{a_{2}}{\Rightarrow}B_{2}\overset{a_{2}}{\Rightarrow}B_{1}\overset{a_{1}}{\Rightarrow}B_{0} \end{array}\right).$$

Consider a 3-box diagram in Top_* of the form:

Then, for each set $\{K_3, F_1, F_2, F_3, H_2\}$ of coherent homotopies, the induced diagram

is a split 2-box diagram in HT op*.

Box quaternary bracket operation (small version)

We define the (small) box quaternary bracket operation

$$Q_{3}\begin{pmatrix}A_{3}\overset{a_{3}}{\rightarrow}A_{2}\overset{a_{2}}{\rightarrow}A_{1}\longrightarrow *\\ \downarrow & f_{2}\downarrow & \downarrow f_{1}& \downarrow\\ *\longrightarrow B_{2}\overset{a_{3}}{\rightarrow}B_{1}\overset{a_{2}}{\rightarrow}B_{0}\end{pmatrix}\subset \mathcal{A}_{Top_{*}}(o\colon\Sigma A_{3}\to B_{0})\cong\pi(\Sigma^{2}A_{3},B_{0})$$

to be the union of 2-sided matrix Toda brackets

$$\bigcup \dot{} \dot{} \dot{} = \begin{pmatrix} \Sigma A_3 \xrightarrow{coext(F_3, K_3)} \mathcal{M}(f_2, a_2) & \xrightarrow{\mu_{F_2}} & B_1 \\ & q & & \downarrow \\ & & \downarrow j \\ & & \Sigma A_2 \xrightarrow{coext(F_2, 1_o)} \mathcal{M}(i_1^{b_2} \circ f_1, o) \xrightarrow{ext(H_2, F_1)} B_0 \end{pmatrix}$$

where the union is taken over all sets of coherent homotopies. It is *defined* (that is, nonvacuous) precisely when a set of coherent homotopies exists as above.

Box quaternary bracket operation (large version)

We define the (large) box quaternary bracket operation

$$\mathcal{Q}_{3}^{c}\left(\begin{array}{c}A_{3}\overset{a_{3}}{\rightarrow}A_{2}\overset{a_{2}}{\rightarrow}A_{1}\longrightarrow\ast\\ \downarrow f_{2}\downarrow & \downarrow f_{1}\downarrow\\ \ast\longrightarrow B_{2}\overset{a_{2}}{\rightarrow}B_{1}\overset{a_{2}}{\rightarrow}B_{0}\end{array}\right)\subset\mathcal{A}_{\mathcal{T}op_{\ast}}(o\colon\Sigma A_{3}\to B_{0})\cong\pi(\Sigma^{2}A_{3},B_{0})$$

to be the union of box brackets

$$\bigcup \mathcal{L}_{2} \left(\begin{array}{c}
\Sigma A_{3} \xrightarrow{coext(F_{3},K_{3})} & \mathcal{M}(f_{2},a_{2}) \xrightarrow{\mu_{F_{2}}} & B_{1} \\
[\Sigma a_{3}] \downarrow & \mu \downarrow & \downarrow [b_{1}] \\
\Sigma A_{2} \xrightarrow{coext(F_{2},1_{o})} & \mathcal{M}(i_{1}^{b_{2}} \circ f_{1},o) \xrightarrow{ext(H_{2},F_{1})} & B_{0}
\end{array} \right)$$

where the union is taken over all sets of coherent homotopies.

• We note that since $\mathcal{A}_{\mathcal{T}op_*}(o \colon \Sigma A_3 \to B_0) \cong \pi(\Sigma^2 A_3, B_0)$ is an abelian group, the large box quaternary bracket operation \mathcal{Q}_3^c also can be defined as the union of the operations

$$\gamma \left(\begin{array}{c}
\Sigma A_3 \xrightarrow{coext(F_3, K_3)} \mathcal{M}(f_2, a_2) \xrightarrow{\mu_{F_2}} B_1 \xrightarrow{b_1} B_0 \\
\downarrow id \downarrow \qquad \qquad \downarrow j \qquad \qquad \downarrow id \\
\Sigma A_3 \xrightarrow{\Sigma A_3} \Sigma A_2 \xrightarrow{coext(F_2, 1_o)} \mathcal{M}(i_1^{b_2} \circ f_1, o) \xrightarrow{ext(H_2, F_1)} B_0
\right)$$

• We note that since $\mathcal{A}_{\mathcal{T}op_*}(o \colon \Sigma A_3 \to B_0) \cong \pi(\Sigma^2 A_3, B_0)$ is an abelian group, the large box quaternary bracket operation \mathcal{Q}_3^c also can be defined as the union of the operations

$$\gamma \left(\begin{array}{ccc}
\Sigma A_3 \xrightarrow{coext(F_3, K_3)} \mathcal{M}(f_2, a_2) & \xrightarrow{\mu_{F_2}} & B_1 \xrightarrow{b_1} & B_0 \\
\downarrow id & \downarrow q & \downarrow j & \downarrow id \\
\Sigma A_3 & \xrightarrow{\Sigma A_3} & \Sigma A_2 \xrightarrow{coext(F_2, 1_o)} \mathcal{M}(i_1^{b_2} \circ f_1, o) \xrightarrow{ext(H_2, F_1)} & B_0
\end{array}\right)$$

• The inclusion $Q_3 \subset Q_3^c$ is valid so that Q_3 possibly has smaller indeterminacy that Q_3^c .

The quaternary Toda bracket

•

$$A_4 \xrightarrow{a_4} A_3 \xrightarrow{a_3} A_2 \xrightarrow{a_2} A_1 \xrightarrow{a_1} A_0$$

Assume homotopies H_i : $o \Rightarrow a_{i-1} \circ a_i$, i = 2, 3, 4 exist satisfying the coherence conditions:

$$-a_2H_4 + H_3a_4 \sim 1_o$$
 (implies $0 \in \{a_2, a_3, a_4\}$)
 $-a_1H_3 + H_2a_3 \sim 1_o$ (implies $0 \in \{a_1, a_2, a_3\}$)

The quaternary Toda bracket

•

$$A_4 \xrightarrow{a_4} A_3 \xrightarrow{a_3} A_2 \xrightarrow{a_2} A_1 \xrightarrow{a_1} A_0$$

Assume homotopies H_i : $o \Rightarrow a_{i-1} \circ a_i$, i = 2, 3, 4 exist satisfying the coherence conditions:

$$-a_2H_4 + H_3a_4 \sim 1_o$$
 (implies $0 \in \{a_2, a_3, a_4\}$)
 $-a_1H_3 + H_2a_3 \sim 1_o$ (implies $0 \in \{a_1, a_2, a_3\}$)

Then the 3-box diagram

$$\begin{pmatrix}
A_4 \stackrel{a_4}{\rightarrow} A_3 \stackrel{a_3}{\rightarrow} A_2 \longrightarrow * \\
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow a_2 \qquad \downarrow \\
* \longrightarrow * \longrightarrow A_1 \stackrel{\rightarrow}{\rightarrow} A_0
\end{pmatrix}$$

admits $\{H_4, H_3, H_2\}$ as a set of coherent homotopies.

We set

$$\{a_1, a_2, a_3, a_4\}' := Q_3 \subset \pi(\Sigma^2 A_4, A_0)$$

obtaining the quaternary Toda bracket (as considered by Hardie-Kamps-Marcum-Oda (2004)) while

$$\{a_1, a_2, a_3, a_4\} := Q_3^c \subset \pi(\Sigma^2 A_4, A_0)$$

defines the classical quaternary Toda bracket (of Toda, \widehat{O} guchi, Mimura, Spanier).

We set

$${a_1, a_2, a_3, a_4}' := Q_3 \subset \pi(\Sigma^2 A_4, A_0)$$

obtaining the quaternary Toda bracket (as considered by Hardie-Kamps-Marcum-Oda (2004)) while

$$\{a_1, a_2, a_3, a_4\} := Q_3^c \subset \pi(\Sigma^2 A_4, A_0)$$

defines the classical quaternary Toda bracket (of Toda, Ôguchi, Mimura, Spanier).

• Of course $\{a_1, a_2, a_3, a_4\}' \subset \{a_1, a_2, a_3, a_4\}.$

 \mathcal{L}_3 is defined if the homotopies satisfy coherence conditions

 \mathcal{L}_3 is defined if the homotopies satisfy coherence conditions

• Inductively this leads to long box brackets

 \mathcal{L}_3 is defined if the homotopies satisfy coherence conditions

- Inductively this leads to long box brackets
- Can be used to complete computations of some unstable groups

 \mathcal{L}_3 is defined if the homotopies satisfy coherence conditions

- Inductively this leads to long box brackets
- Can be used to complete computations of some unstable groups
- For example useful in the 25-stem for describing generators of the group $\pi_{32}^7 = \mathbb{Z}/4 \oplus \mathbb{Z}/8 \oplus (\mathbb{Z}/2)^3$

The box quartet operation (Marcum-Oda, 2009)

$$W \xrightarrow{W} C \xrightarrow{g} B \xrightarrow{r} R \xrightarrow{z} Z$$

$$h \downarrow \qquad \qquad \downarrow f \qquad \downarrow b \qquad \downarrow y \qquad \downarrow k \qquad \bowtie \qquad \mathcal{D} \subset (\Sigma^{2}W, V)$$

$$U \xrightarrow{u} A \xrightarrow{a} X \xrightarrow{s} Y \xrightarrow{v} V$$

 \mathcal{D} is defined if the three associated box brackets are coherent

The box quartet operation (Marcum-Oda, 2009)

 \mathcal{D} is defined if the three associated box brackets are coherent

This operation yields new "relations of elements"

The box quartet operation (Marcum–Oda, 2009)

 \mathcal{D} is defined if the three associated box brackets are coherent

- This operation yields new "relations of elements"
- For example, in the 23-stem $\overline{\varepsilon}_6 \circ \varepsilon_{21} = 4\nu_6 \circ \overline{\kappa}_9$ in $\pi_{29}S^6$

Double box bracket operation

• Suppose that the 2-cube diagram in $\mathcal{T}op_*$

admits a set of coherent homotopies:

$$\mathcal{U}_2 = \{F_2, F_1, H_2, K_2, G_2, G_1, J_2, L_2, T_2, T_1, S_2, S_1, M_2, M_1, M_0\}$$

Double box bracket operation

• Suppose that the 2-cube diagram in $\mathcal{T}op_*$

admits a set of coherent homotopies:

$$\mathcal{U}_2 = \{F_2, F_1, H_2, K_2, G_2, G_1, J_2, L_2, T_2, T_1, S_2, S_1, M_2, M_1, M_0\}$$

Then a 2-box diagram in the homotopy category is obtained:

The operations

$$\begin{array}{c} \vdots \\ A_2 \stackrel{a_2}{\Rightarrow} A_1 \stackrel{a_1}{\Rightarrow} A_0 \\ \stackrel{s_1}{\mapsto} \downarrow \quad \psi^{s_0} \\ B_2 \stackrel{a_2}{\Rightarrow} B_1 \stackrel{a_1}{\Rightarrow} B_0 \end{array} \right) \text{ and } \mathcal{L}_2 \left(\begin{array}{c} A_2 \stackrel{a_2}{\Rightarrow} A_1 \stackrel{a_1}{\Rightarrow} A_0 \\ f_2 \psi \quad \psi^{f_1} \quad \psi^{f_0} \\ B_2 \stackrel{a_2}{\Rightarrow} B_1 \stackrel{a_1}{\Rightarrow} B_0 \end{array} \right) \text{ are }$$
 defined.

The operations

$$\begin{array}{c} \vdots \\ A_2 \stackrel{a_2}{\Rightarrow} A_1 \stackrel{a_1}{\Rightarrow} A_0 \\ \downarrow \vdots \\ B_2 \stackrel{a_2}{\Rightarrow} B_1 \stackrel{a_1}{\Rightarrow} B_0 \end{array} \right) \text{ and } \mathcal{L}_2 \left(\begin{array}{c} A_2 \stackrel{a_2}{\Rightarrow} A_1 \stackrel{a_1}{\Rightarrow} A_0 \\ f_2 \downarrow & \downarrow f_1 & \downarrow f_0 \\ B_2 \stackrel{a_2}{\Rightarrow} B_1 \stackrel{a_1}{\Rightarrow} B_0 \end{array} \right) \text{ are }$$
defined.

• Moreover
$$\mathcal{L}_2$$
 $\begin{pmatrix} A_2 \stackrel{a_2}{\Rightarrow} A_1 \stackrel{a_1}{\Rightarrow} A_0 \\ f_2 \psi & \forall f_1 & \forall f_0 \\ B_2 \stackrel{b_2}{\Rightarrow} B_1 \stackrel{b_1}{\Rightarrow} B_0 \end{pmatrix} = \{f_0, a_1, a_2\} - \{b_1, f_1, a_2\} + \{b_1, b_2, f_2\}$