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Homotopy groups of spheres

@ Study the groups m,S", k>1,n>0

Howard J. Marcum On certain tertiary homotopy operations



Homotopy groups of spheres

@ Study the groups m,S", k>1,n>0

o We say m,xS" is stable if n > k41
“sphere of origin > stem +1"
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Homotopy groups of spheres

@ Study the groups m,S", k>1,n>0
o We say m,xS" is stable if n > k41
“sphere of origin > stem +1"

@ in which case by a Theorem of Freudenthal
TapkS" & 7Tn—‘,—k—i-15nJr = 7Tn—i—/<-i—25n+ =

defining “the stable k-stem” 7r;(g
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o mS"=0if k<n
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o mS"=0ifk<n
e m,S"=Zifn>1

Howard J. Marcum On certain tertiary homotopy operations



o mS"=0ifk<n
e m,S"=Zifn>1
e if nis odd, kK > n, then 7, S" is a finite group
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o mS"=0ifk<n

e m,S"=Zifn>1

e if nis odd, kK > n, then 7, S" is a finite group

e if niseven, k > n, and k # 2n — 1 then m;S" is a finite group
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mS"=0ifk<n

mS"=Zifn>1

if nis odd, kK > n, then 7, S" is a finite group

if nis even, k > n, and k # 2n—1 then 7, S" is a finite group

if nis even then mp,_1S" = Z @ (a finite group)
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mS"=0ifk<n

mS"=Zifn>1

if nis odd, kK > n, then 7, S" is a finite group

if nis even, k > n, and k # 2n—1 then 7, S" is a finite group
if nis even then mp,_1S" = Z @ (a finite group)

occasionally stable stems are trivial:

S S S S
Ty :0, Ty :O, 7T12:07 7T29:O
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Construction of elements

@ compositions «o 3

sm_2 gk o gn
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Construction of elements

@ compositions «o 3
Smiski’gsn
@ suspensions Eo«

Sk e . gn s Sk+1 Ea; gn+l
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Construction of elements

@ compositions «o 8
Smisk‘a)S”
@ suspensions E«
Gk gn s Gkl Eg gntl
e Whitehead products [«, 5]

gith-1_W_sjy, Skﬂsn
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Construction of elements

@ compositions «o 3
sm gk gn
@ suspensions Eo«
Sk 2. gn s Gkl Eg gntl
e Whitehead products [a, ]
sitk-1 Wi\, 5k 2V gn
e Toda brackets (secondary compositions) {«, 3,7}
spsm gk o gn
{a, 8,7} C mp41S" is defined if oo F~0and foy~o
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Toda bracket operation

w c A—2>x r~ {a f,w} Cm(ZW,X)

o
{a,f,w} is defined if aof ~ o and fow ~ o
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Toda bracket operation

W —">C A—2>x r~ {a f,w} Cm(ZW,X)

o
{a,f,w} is defined if aof ~ o and fow ~ o

@ indeterminacy of {a,f,w}is aom(ZW,A) + m(XC,X) o Tw
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Toda bracket operation

a
w C A X

~  {a,f,w} C (W, X)

o
{a,f,w} is defined if aof ~ o and fow ~ o

@ indeterminacy of {a,f,w}is aom(ZW,A) + m(XC,X) o Tw
@ explicit definition:

H 2t ifo<t
forze W, [z,t] — { (w(2).2t), Y=

<3
aK(z,2—-2t), if3<t<1
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Toda bracket operation

w c A x w~ A{af,w}Cn(EW,X)

o
{a,f,w} is defined if aof ~ o and fow ~ o

@ indeterminacy of {a,f,w}is aom(ZW,A) + m(XC,X) o Tw
@ explicit definition:

H(w(z),2t), if0<t<3
aK(z,2—-2t), if3<t<1

e Toda (1952) showed that v/ € {n3,2t4,ms} C 1653 = Z/12

has order 4, with indeterminacy Z/2. This was the first
nontrivial Toda bracket computed.

forze W, [Z,t]r—>{
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@ ifaob~ o0 and bo c ~ o then generally
fo{ab,c} C{foa,b,c}
{a,b,c}oEg C {a,b,cog}
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@ ifaob~ o0 and bo c ~ o then generally
fo{ab,c} C{foa,b,c}
{a,b,c}oEg C {a,b,cog}

@ More useful is
Toda's Lemma: if agoa; ~ 0, ag0a» ~ 0, a0 az ~ o then

ap o {a1,a», a3} = —{ao,a1,a>} o Ea3
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@ ifaob~ o0 and bo c ~ o then generally
fo{ab,c} C{foa,b,c}
{a,b,c} o Eg C {a,b,cog}
@ More useful is
Toda's Lemma: if agoa; ~ 0, ag0a» ~ 0, a0 az ~ o then
ag o {a1,az, a3} = —{ap, a1, az} o Eas

@ the equality in Toda's Lemma gives rise to a quaternary Toda
bracket {ao, a1, az,as}. This is a tertiary operation (raising
stem dimension by 2). Toda made mention of the operation in
an announcement (C.R. Paris 1955); it was developed by
Oguchi (1963). The definition requires a coherence condition
and is obscure and technically difficult.
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@ ifaob~ o0 and bo c ~ o then generally
fo{ab,c} C{foa,b,c}
{a,b,c}oEg C {a,b,cog}

@ More useful is
Toda's Lemma: if agoa; ~ 0, ag0a» ~ 0, a0 az ~ o then

ap o {a1,a», a3} = —{ao,a1,a>} o Ea3

@ the equality in Toda's Lemma gives rise to a quaternary Toda
bracket {ao, a1, az,as}. This is a tertiary operation (raising
stem dimension by 2). Toda made mention of the operation in
an announcement (C.R. Paris 1955); it was developed by
Oguchi (1963). The definition requires a coherence condition
and is obscure and technically difficult.

@ the quaternary Toda bracket is needed in the 9-stem to
describe one of the generators in

m125° = (2/2)* = {3} & {m3 0 ea}.

/
Namely, pz € {n3, Ev/,8u7,v7} = pz + {n3 0 e4}.



EHP sequence

The following sequence is called the EHP sequence

E H P E
T S" 7Tk+15n+14>7Tk+152n+14>77k—15n4>' ..

where

E = suspension homomorphism

H = Hopf invariant

P is related to the Whitehead product

This sequence is

e exact if nis odd and kK < 3n—3

and

e exact on 2-primary components if k > 2n.
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The box bracket operation (Hardie-Marcum-Oda, 2001)

o

Skl O

e G -

hl £ fl <. \Lb ~ Lo C m(IW,X)

U——A—X

N

o
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The box bracket operation (Hardie-Marcum-Oda, 2001)

o

Skl O

e G -

hl £ fl <. \Lb ~ Lo C m(IW,X)

U——A—=X

N

o

@ an element of £, is of the form

—bK+Gw+aF+Hh:o=0: W —=X
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The box bracket operation (Hardie-Marcum-Oda, 2001)

o

Skl O

e G -

hl £ fl <. \Lb ~ Lo C m(IW,X)

U——A—=X

N

o
@ an element of L5 is of the form
—bK+ Gw+aF +Hh:o=0: W — X
o the Toda brackets {a, u, h}, {a,f,w} and {b, g, w} need not
be defined!!
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Some special box brackets

WLC—>*
o Lo| | Vr V| =—{af,w}
*—>A—>X
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Some special box brackets

WLC—>*
o Lo| | Vr V| =—{af,w}
*—= A= X
WgCiB W — % — x
Ly | e =themi=ta| vE |}
* —>x —> X g b
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Some special box brackets
w
o Lr|

o Lo VJ

X <— %

¢ == f w
o‘62 h¢’ ‘Lf ‘L :{aa ) }
U— A3 X u h

Barratt (1963), Mimura (1964)
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Some special box brackets

w% ¢«
°£2 ¢/ ‘Lf‘b = {a,f,w}
* = A3 X
w4 cfg Wg'zg'l‘
o Lo |y b | =1{bgwi=1Lo i»s»x
* —>x —> X g b
WLC—>* f
o‘62 h¢’ ‘Lf‘b :{aa 7W}
U— A3 X u h

-
Mori(1971,stably), Hardie-Kamps-Marcum (1991)

o Lo| | jf ’jb :{’;,g,w}
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Definition of a 2-category C

@ objects X

1-morphisms X A Y
f

. /’"\
2-morphisms x | F v
S~

g
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Definition of a 2-category C

@ objects X
1-morphisms X A Y
f
. TN
2-morphisms x | F v
A

g
@ there are two composition operations
horizontal composition -
vertical composition +
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Definition of a 2-category C

@ objects X
1-morphisms X A Y
f
. TN
2-morphisms x | F v
A

g
@ there are two composition operations
horizontal composition -
vertical composition +
@ Interchange Law is valid:

(G'-G)+(F-F)=(G'+ F)-(G+F)
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Definition of a 2-category C

@ objects X
1-morphisms X A Y
£
. TN
2-morphisms x | F v
S~

g
@ there are two composition operations
horizontal composition -
vertical composition +
@ Interchange Law is valid:

(G'-G)+(F-F)=(G'+ F)-(G+F)

e Example: 7 op.
objects: based topological spaces X

1-morphisms: continuous based maps X f Y
2-morphisms: track classes of based topological homotopies
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@ A 2-category C has zeros if C(x,X) and C(X, *) are each the
one object category for all objects X
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@ A 2-category C has zeros if C(x,X) and C(X, *) are each the
one object category for all objects X

@ the composite X — % — Y defines the zero 1-morphism
(or map) 0: X = Y
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@ A 2-category C has zeros if C(*, X) and C(X, ) are each the
one object category for all objects X
@ the composite X —* — Y defines the zero 1-morphism

(or map) 0: X = Y
@ 1,: 0 = o denotes the identity 2-morphism on the zero map
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@ A 2-category C has zeros if C(x,X) and C(X, *) are each the
one object category for all objects X

@ the composite X — % — Y defines the zero 1-morphism
(or map) 0: X = Y

@ 1,: 0 = o denotes the identity 2-morphism on the zero map

@ There is an associated homotopy category HC
f,g: X — y are homotopic if there exists an invertible
2-morphism f = g
we refer to invertible 2-morphisms as homotopies; [f] denotes
the homotopy classes of f in HC
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@ A 2-category C has zeros if C(x,X) and C(X, *) are each the
one object category for all objects X

@ the composite X — % — Y defines the zero 1-morphism
(or map) 0: X = Y

@ 1,: 0 = o denotes the identity 2-morphism on the zero map

@ There is an associated homotopy category HC
f,g: X — y are homotopic if there exists an invertible
2-morphism f = g
we refer to invertible 2-morphisms as homotopies; [f] denotes
the homotopy classes of f in HC

@ The set of all invertible self 2-morphisms of a 1-morphism f
will be denoted

f

/-\ . . .
Ac(f: X = Y):=< x L F v |Fisinvertible
N~
f

and is a group under vertical composition of 2-morphisms.
The group identity is 1f.



Suspension 2-functor

Let C be a 2-category with zeros and ¥ : C — C a 2-functor
preserving zeros. For each object X of C let there be assigned an
invertible 2-morphism

/K
X IDx ¥X
\_/
o

which is natural in X. Then for each pair of objects (X, Y) there is
an induced function

¢ =x,y): HC(ZX,Y) = Ac(o: X = Y)
given by

/o\
a:2X—=Y — X lJeabx Y
\_/

o

If ¢ is a bijection for all pairs (X, Y) then X is called a suspension
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The 2-sided matrix Toda bracket

Let C be a 2-category with zeros.

) w%cfp
. FY b CAc(o: W —=Y)
A?X?Y

It is defined if aof ~ bog, gow ~ 0 and soa~ o. It consists of
all 2-morphisms of the form

—(sob)K+sFw+ H(fow):0=0: W =Y

for homotopies H: 0 = soa, F: aof = bogand K: 0 = gow.
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The 2-sided matrix Toda bracket

Let C be a 2-category with zeros.

) w%cfp
. FY b CAc(o: W —=Y)
A?X?Y

It is defined if aof ~ bog, gow ~ 0 and soa~ o. It consists of
all 2-morphisms of the form

—(sob)K+sFw+ H(fow):0=0: W =Y

for homotopies H: 0 = soa, F: aof = bogand K: 0 = gow.

@ If both fow ~ o0 and so b~ o then

g
. C—=>B
So{b,g,W}:_[L £y Vb :{s,b,g}ow.
a f : A X Y f

This is a generalization of Toda's Lemma.
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Theorem

Let C be a 2-category with zeros. Let

a: a
A3 % Az 2 Ar ! Ao
fl if lfl lfo
B B B B
S 2 . )

be a 3-box diagram of 1-morphisms in C. Then fyo{ay, as,as} and
{b1, ba, b3} o f3 are each contained in the same double coset of the
subgroups by o Ac(o : A3 — By) and Ac¢(o : Ay — Bp) o a3 of the

group Ac(o : A3 — By). Consequently, letting this double coset be
denoted by

as az ai
A3 —> Ay —> A1 — Ap

vyl By V6 (A k| € Ac(o: A3 — Bp)
83%82%81%80
b3 b by
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The inclusion

a a as a2 ai
A3»3A2»2A1 A3 —=> Ay — A1 —> Ao
m il IR cylal e s e
. B, — By — By B3 — B, — B; — B
b2 bl 3b3 2b2 lbl 0

holds in Ac(o : A3 — Bp).
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The inclusion

a a as az ai
. A3;A2;A1 A3 — Ay — A1 — Ao
mull R TR PV I A PO PR
. B, — By — By B3 — B, — B; — B
by by 3b3 2b2 lbl 0

holds in Ac(o : A3 — Bp).

@ Inclusion can be proper; e.g., the 3-box diagram in H7 op.

Vis €7 27
§21 —> 615 —= g7 —— &7

720 J/ \L V12 W i/ Ev'

520 —> §12 —> 5 —> g4
V12 " na

has T1_ =0 in m»S* while
v = {ng o fig, 2Ep’ 0 15, EV 0 57} = (Z,/2)3.



Split 2-box diagrams

an al
A — A —— A

1

B — B —— By
2 by

A homotopy commutative diagram of 1-morphisms with
ayoay~oand byo by ~ o0 in a 2-category C with zeros is said to
be a split 2-box diagram.
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Split 2-box diagrams

2 ai
A2 —_— Al —_— Ao

1

B — B —— By
2 by

A homotopy commutative diagram of 1-morphisms with

ayoay~oand byo by ~ o0 in a 2-category C with zeros is said to
be a split 2-box diagram.

Theorem

The inclusion

a» ai ap a1
. A= A1 = Ao A29A1$AO
T sy Y% CLy| BV VA If
: BQ»B:[»BO 329819-30
by by bz by

is valid as subsets of Ac(o: A» — By)
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Theorem. Assume that A¢(o: Az — Bp) is abelian. Then the
following hold.

o
as a al as a
A3 —> Ay —> A1 —> Ay A3 —> Ay —> A;
vl AL e A 6 | =L | bofs) fiom | fooa
B3 — B, — B; — By By —= B; — By
b3 by by by by
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Theorem. Assume that A¢(o: Az — Bp) is abelian. Then the
following hold.

°
as a» a1 as a
A3 —> Ay —> A1 —> Ay A3 —> Ay —> A;
vl AL e A 6 | =L | bofs) fiom | fooa
B3 — B, — B; — By By —= B; — By
b3 b2 bl b2 b1
o If
a ai
A2 %Al HAO
S S(
By —— By —— By
1
is a split 2-box diagram then
a a
A Zoa0 2L a A Zoa L p 2By
Lo By V& Vb | =~ s | Jid
By = B1 > By Ay — B, — B; — By
2 by f by b
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Theorem

Consider a 3-box diagram in T op, of the form:

as ap

Az As AL i
B. B B,
2 b2 1 b1 0

Then, for each set {Ks, F1, F2, F3, H2} of coherent homotopies, the
induced diagram

g ORGP g
o [d] #l 0l ]

YA —— M 2 fi,0) ————> Bo
coext(Fz,1,) (i%of1,0) ext(Ha,F1)

is a split 2-box diagram in H7 op,.
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Box quaternary bracket operation (small version)

We define the (small) box quaternary bracket operation

as az
A3 —> Ay —> A —> *

Q| | &l I8 | | CArop.(0: TAs — By) = n(T2As3, Bo)
*4>B2?2>31F>50
1

to be the union of 2-sided matrix Toda brackets

coext(F3,K3) HFy
YA ————> M(fh,a) ————— By

Ut L lf
YA, ————> M(i20fi,0) ——— Bo

coext(F2,10) ext(Ha,F1)

where the union is taken over all sets of coherent homotopies. It is
defined (that is, nonvacuous) precisely when a set of coherent
homotopies exists as above.
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Box quaternary bracket operation (large version)

We define the (large) box quaternary bracket operation

as az
A3 —> Ay —> A —> *

os| | Bl & | | C Arop.(0: TA3 — By) = n(T2As, By)
* —> B2 ? Bl ? Bo
2 1

to be the union of box brackets

coext(F3,K3 LF
T A3 _coextlFs Ks) M(fpa) ————— > B,

U EQ [Xa3] Ml [b1]

YA, —————> M(iP20fj,0) —————— B
2 coext(Fp,1,) (i“of1,0) ext(Ha,F1) °

where the union is taken over all sets of coherent homotopies.
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o We note that since Arop, (0: £A3 — By) = m(X2As, B) is
an abelian group, the large box quaternary bracket operation
Qf also can be defined as the union of the operations

coext(F3,K3 HF, b
Y A3 %)M(f2732) 2 B: ! By
v\ id q J id
YA YA M(i2ofi,0) ———> B
3 a3 2 coext(Fy,1,) (i%ofi,0) ext(Ha,F1) ’
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o We note that since Arop, (0: £A3 — By) = m(X2As, B) is
an abelian group, the large box quaternary bracket operation
Qf also can be defined as the union of the operations

coext(F3,K3 HF, b
Y A3 %)M(f2732) 2 B: ! By
v\ id q J id
YA YA M(i2ofi,0) ———> B
3 a3 2 coext(Fy,1,) (i%ofi,0) ext(Ha,F1) ’

@ The inclusion Q3 C Qf is valid so that Q3 possibly has
smaller indeterminacy that Qf.
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The quaternary Toda bracket

a. a: a a
A2 A2 A2 A A

Assume homotopies H;: 0 = a;_1 0 a;, | = 2,3, 4 exist
satisfying the coherence conditions:

—apHy + Hzas ~ 1, (implies 0 € {az, as, as})
—ai1Hs + Hyaz ~ 1, (implies 0e {al, a, 33})
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The quaternary Toda bracket

a. a: a a
A2 A2 A2 A A

Assume homotopies H;: 0 = a;_1 0 a;, | = 2,3, 4 exist
satisfying the coherence conditions:

—apHy + Hzas ~ 1, (implies 0 € {az, as, as})
—ai1Hs + Hyaz ~ 1, (implies 0e {al, a, 33})
@ Then the 3-box diagram

aq as
A4%A3%A2%*

RS

* —>x —> A — Ay
a1
admits {Ha, Hs, Ho} as a set of coherent homotopies.
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o We set
{31, d2, ds, 34}/ = Q3 C 77(22/44, AO)

obtaining the quaternary Toda bracket (as considered by
Hardie-Kamps-Marcum-Oda (2004)) while

{ala a2, 43, 34} = Q:CJ,: C 7['(22/44, Ao)

defines the classical quaternary Toda bracket (of Toda,
Oguchi, Mimura, Spanier).
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o We set
{31, d2, ds, 34}/ = Q3 C 77(22/44, AO)

obtaining the quaternary Toda bracket (as considered by
Hardie-Kamps-Marcum-Oda (2004)) while

{ala a2, 43, 34} = Q:CJ,: C 7['(22/44, Ao)

defines the classical quaternary Toda bracket (of Toda,
Oguchi, Mimura, Spanier).

o Of course {a1, az, a3, a1}’ C {a1, a2, a3, a4}
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The triple box bracket (Marcum—Oda, 2008)

o o

as

As Ay —25 Ay Ao
@i g fl g fi 2} \Lfo M L3 C7T(22A3,BQ)
2 1

Bs b B> & By b Bo

o o

L3 is defined if the homotopies satisfy coherence conditions
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The triple box bracket (Marcum—Oda, 2008)

o o

as

A3 A2 2 Al AO
%i LY fl fy fi iy \Lfo L3 C m(X%As, By)
2 1

By —2~ B, —2~ B - B,

o o

L3 is defined if the homotopies satisfy coherence conditions

@ Inductively this leads to long box brackets
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The triple box bracket (Marcum—Oda, 2008)

%i LY l fy i iy \Lfo L3 C m(X%As, By)
bs f by f by

L3 is defined if the homotopies satisfy coherence conditions

@ Inductively this leads to long box brackets

@ Can be used to complete computations of some unstable
groups
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The triple box bracket (Marcum—Oda, 2008)

o o

a;

Az —2= Ay 2= A Ao

%i Qfl gfi iy \Lfo L3 C m(X%As, By)
2 1

B3 % B> < B < Bo

o o
L3 is defined if the homotopies satisfy coherence conditions

@ Inductively this leads to long box brackets

@ Can be used to complete computations of some unstable
groups

o For example useful in the 25-stem for describing generators of
the group 71, = Z/4 © Z/8 ® (Z/2)3
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The box quartet operation (Marcum—Oda, 2009)

w s g "agrZaz
h f b y k ~ DcC((Xxw,Vv
oo (Zw.v)
U= A= X —>Y —>V

D is defined if the three associated box brackets are coherent
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The box quartet operation (Marcum—Oda, 2009)

w g r z

w c B R z
h f b y Kk ~ DcC(X?W,V
oo (2w, V)
U A X Y v

u a S v
D is defined if the three associated box brackets are coherent

@ This operation yields new “relations of elements”
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The box quartet operation (Marcum—Oda, 2009)

w g r z

w c B R z
h f b y Kk ~ DcC(X?W,V
oo (2w, V)
U A X Y v

u a S v
D is defined if the three associated box brackets are coherent

@ This operation yields new “relations of elements”

@ For example, in the 23-stem Zg 0 €01 = 416 0 Rg in mpoS®
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Double box bracket operation

@ Suppose that the 2-cube diagram in 7 op,

6C—2 o2 o¢
2 1 0
ks ke ko
Sy s Y
A> Aq Ao 80

gz\L gl\L
d dy
f Dy — | —= Dy — |—= Dy
fi fo
L W
B> B: By
by

admits a set of coherent homotopies:

Uy ={Fp, F1, H2, Ko, G, G1, o, Lo, T2, T1, S2, 51, Mo, My, Mo}
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Double box bracket operation

@ Suppose that the 2-cube diagram in 7 op,

6—2 .02 ¢
2 1 0
ko k1 ko
S
Az Ar Ao 80

gz\L gl\L
d dy
f Dy — | —= Dy — |—= Dy
fi fo
L W
B> B: By
by

admits a set of coherent homotopies:
Z/{2 - {F2a F17 H27 K27 G27 617 J27 L27 T27 T1> 523 517 M27 Ml7 MO}
@ Then a 2-box diagram in the homotopy category is obtained:

coext(Fa,K>) . ext(Hz,F1)
A, —————> M(iy%ofi,a) ———> Bo

[Zkg]i lM(SLMl,Tl) l[ho]
coext( Gy 7JQ) ext( Ly, G1)

.d-
TG > M(iPogy.c;) ————i> Dy
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@ The operations

az a1 a ai
. Ay = A1 = Ao Ay = A > Ag
N sty Y50 and Lo | RV VA fh | are
’ B, = B > By By, = B = By
2 by by by

defined.
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@ The operations

az a1 a ai
. Ay = A1 = Ao Ay = A > Ag
N sty Y50 and Lo | RV VA fh | are
’ B, = B > By By, = B = By
2 by by by

defined.

az ai
A2 — A1 — Ao

@ Moreover Lo | £¥ VA
B, > B; = By
bz by

{ﬂ)? ai, 32} - {bla ﬂa 32} + {bla b27 f2}
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