Towards a Resolution of the K(2)-local Sphere at the Prime 2.

Irina Bobkova Northwestern University

Joint Mathematics Meetings Special Session on Homotopy Theory January 17, 2014

Homotopy Groups of Spheres

Consider the sphere spectrum S.

Question

How do we compute π_*S ?

Answer

We choose appropriate localizations so that the problem becomes approachable.

Chromatic Homotopy Theory

- Fix a prime p.
- The Johnson-Wilson theories {*E*(*n*)}_{*n*=0,1,...} allow to filter the category of *p*-local spectra.
- Localizations with respect to Johnson-Wilson theories form chromatic tower

$$\ldots \rightarrow L_{E(2)}X \rightarrow L_{E(1)}X \rightarrow L_{E(0)}X.$$

Chromatic Convergence Theorem (Hopkins, Ravenel)

For a finite p-local spectrum X

$$X = \underset{n}{\operatorname{holim}} L_{E(n)}X.$$

イロン 不得 とく ヨン トロン

Morava K-theory

Let K(n) denote *n*-th Morava K-theory.

Theorem (Ravenel, Hovey-Strickland)

There is a homotopy pullback diagram:

$$L_{E(n)}X \longrightarrow L_{K(n)}X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$L_{E(n-1)}X \longrightarrow L_{E(n-1)}L_{K(n)}X.$$

So we can concentrate on computing $\pi_* L_{\mathcal{K}(n)}S$. We do it with the help of Morava *E*-theory and Morava Stabilizer Group.

Morava E-theory

Theorem (Morava, Goerss-Hopkins-Miller, Devinatz)

- For each n there exists a spectrum E_n, called the n-th Morava E-theory,
- and a group \mathbb{G}_n , called the Morava Stabilizer group.
- \mathbb{G}_n acts on E_n .
- for H a closed subgroup of G_n we can form homotopy fixed points spectra E_n^{hH}.
- $\bullet E_n^{h\mathbb{G}_n} = L_{K(n)}S^0.$
- For any closed subgroup H of \mathbb{G}_n there is a spectral sequence

$$E_2^{s,t} = H^*(H,(E_n)_*) \Longrightarrow \pi_* E_n^{hH}$$

Known results, n=1, p=2

Theorem (Adams, Baird, Ravenel)

For n = 1 and p = 2 there is the fiber sequence

$$L_{\mathcal{K}(1)}S^0 o \mathcal{K}O\mathbb{Z}_2 o \mathcal{K}O\mathbb{Z}_2,$$

which is equivalent to

$$E_1^{h\mathbb{G}_1} \to E_1^{hC_2} \to E_1^{hC_2}.$$

Known results, n=2

Using the spectral sequence

$$E_2^{*,*} = H^*_c(\mathbb{G}_2,(E_2)_*) \Longrightarrow \pi_* L_{\mathcal{K}(2)}S^0$$
 :

- At $p \ge 5$ Shimomura and Yabe computed $\pi_* L_{\mathcal{K}(2)} S^0$.
- At p = 3 G₂ contains C₃
 Shimomura and Wang computed π_{*}L_{K(2)}S⁰.
- At p = 2 G₂ contains Q₈
 Shimomura and Wang computed the second page of the spectral sequence.

Different approach

Plan

Try to build the K(2)-local sphere spectrum out of $E_2^{hH_i}$ for finite subgroups H_i of \mathbb{G}_2 .

Work with the subgroup \mathbb{G}_2^1 of $\mathbb{G}_2,$ such that there is a fiber sequence

$$L_{\mathcal{K}(2)}S^0 \to E^{h\mathbb{G}_2^1} \to E^{h\mathbb{G}_2^1}.$$

Known results, n=2, p=3

Theorem (Goerss, Henn, Mahowald, Rezk)

There exists a resolution in the K(2)-local category at the prime 3

 $E^{h\mathbb{G}_2^1} \rightarrow E^{hG_{24}} \rightarrow \Sigma^8 E^{hSD_{16}} \rightarrow \Sigma^{40} E^{hSD_{16}} \rightarrow \Sigma^{48} E^{hG_{24}}$

which can be realized to a tower of fibrations:

Tower Spectral Sequence

Given a tower of fibrations with limit X and fibers F_i

there exists a spectral sequence

$$E_1^{s,t} = \pi_{t-s}F_s \Longrightarrow \pi_{t-s}Z.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conjecture (Mahowald, Rezk, Behrens)

For p > 2 there exist spectra Q(N) such there is a fiber sequence

$$DQ(N) \rightarrow L_{K(2)}S \rightarrow Q(N).$$

Theorem (Behrens)

The conjecture is true for p = 3.

Proof uses the GHMR resolution.

Known results, n=2, p=2

Theorem (Goerss, Henn, Mahowald, Rezk)

There exists a resolution in the K(2)-local category at the prime 2

$$E^{h\mathbb{S}_2^1} o E^{hG_{24}} o E^{hC_6} o E^{hC_6} o X$$

which can be realized to a tower of fibrations:

New results, n=2, p=2

Theorem (B.)

In the tower of fibrations:

$$\pi_* X = \pi_* \Sigma^{48} E^{hG_{24}}$$

Idea of the proof

Theorem (Henn)

There exists a resolution in the K(2)-local category

$$E^{h\mathbb{S}_2^1} o E^{hG_{24}} \vee E^{hG_{24}} o E^{hC_6} \vee E^{hC_4} o E^{hC_2} o E^{hC_6}$$

which can be realized to a tower of fibrations:

New Results, n=2, p=2

Lemma

 Δ^{2+8i} is a homotopy class in π_*X .

Theorem (Folklore, Hopkins-Mahowald)

If Δ^{2+8i} is a homotopy class in π_*X , then $\pi_*X = \pi_*\Sigma^{48}E^{hG_{24}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Work in progress

Conjecture

X is homotopy equivalent to $\Sigma^{48} E^{hG_{24}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ