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Properads

A ∞-prop(erad) is a generalization of a category in two
different ways.

A prop(erad) is a generalization of an ordinary category in
which composition is strictly associative.

In an ordinary category, a morphism x
f // y has one input

and one output.

We extend the notion of a category by allowing morphisms
with finite lists of objects as inputs and outputs.
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Operads

An operad is a generalization of a category in which a morphism
has one output and finitely many inputs, i.e.

(x1, . . . , xn) f // y

with n ≥ 0. We often call such a morphism an operation and
denote it by the following decorated graph.

f
...

y

x1 xn
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Operads

Composition of operations

(w i
1, . . . ,w

i
ki
) gi // xi

for each i , then the operadic composition γ(f ;g1, . . . ,gn), is
represented by the following decorated 2-level tree.

f
...

g1

...
gn
...

y

w1
1 w1

k1
wn

1 wn
kn

Philip Hackney, Marcy Robertson and Donald Yau Infinity Prop(erad)s



Properads

A properad allows both inputs and outputs to be finite lists of
objects, i.e.

(x1, . . . , xm) f // (y1, . . . , yn)

with m,n ≥ 0. These operations are visualized as decorated corolla.

f

...

...

y1 yn

x1 xm
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Properads

The properadic composition is represented by partially grafted
corollas like

g
...

...

f
...

...

This properadic composition is defined when a non-empty
sub-list of the outputs of f match a non-empty sub-list of the
inputs of g .
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The second in which we extend the notion of a category
comes from relaxing the axioms.

In an ∞-category, there might be many ways to form the
composition

1

0 2

f g
∃

Any two compositions are homotopic.

Associativity holds up to homotopy.

Philip Hackney, Marcy Robertson and Donald Yau Infinity Prop(erad)s



The second in which we extend the notion of a category
comes from relaxing the axioms.

In an ∞-category, there might be many ways to form the
composition

1

0 2

f g
∃

Any two compositions are homotopic.

Associativity holds up to homotopy.

Philip Hackney, Marcy Robertson and Donald Yau Infinity Prop(erad)s



The second in which we extend the notion of a category
comes from relaxing the axioms.

In an ∞-category, there might be many ways to form the
composition

1

0 2

f g
∃

Any two compositions are homotopic.

Associativity holds up to homotopy.

Philip Hackney, Marcy Robertson and Donald Yau Infinity Prop(erad)s



The second in which we extend the notion of a category
comes from relaxing the axioms.

In an ∞-category, there might be many ways to form the
composition

1

0 2

f g
∃

Any two compositions are homotopic.

Associativity holds up to homotopy.

Philip Hackney, Marcy Robertson and Donald Yau Infinity Prop(erad)s



To make these ideas precise, we the language of Set∆op
.

f and g are two 1-simplices in X that determine a unique
inner horn Λ1[2] → X , with g as the 0-face and f as the
2-face.

composition exists is equivalent to saying this inner horn has
an extension to ∆[2] → X , so its 1-face is such a composition.

Definition (Joyal, Lurie, Boardman-Vogt,...)

An ∞-category is an object in Set∆op
in which every inner horn

Λk[n]

��

∀ // X

∆[n]
∃

::

with 0 < k < n has a filler.
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To define ∞-properads, we generalize Set∆op
.

Notice that ∆ can be represented using linear graphs, i.e. the
object

[n] = {0 < 1 < ⋯ < n} ∈ ∆

is the category generated by the linear graph

v1 v2 ⋯ vn
0 1 2 n − 1 n

with n vertices.

Here each vertex vi is the generating morphism i − 1→ i .
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Likewise, there is a category Ω, the dendroidal category,
whose objects are operads generated by unital trees.

Objects in the presheaf category SetΩop
are called dendroidal

sets. They are tree-like analogs of simplicial sets.

Definition (Moerdijk-Weiss)

An ∞-operad is an object in SetΩop
that satisfies an inner horn

extension property.
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Properadic compositions and their axioms are parametrized by
connected graphs without directed cycles, which we call
connected wheel-free graphs.

Fact: A connected wheel-free graph freely generates a
properad, called a graphical properad.

Graphical properads form a (non-full) subcategory Γ of
properads. We call Γ the graphical category.

Definition (Hackney-R-Yau)

An ∞-properad is an object in SetΓop
that satisfies an inner horn

extension property.
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Connected Wheel-Free Graphs

Fix an infinite set F.
A generalized graph G is a finite set Flag(G) ⊂ F with

a partition Flag(G) = ∐α∈A Fα with A finite,

a distinguished partition subset Fε called the exceptional cell

an involution ι satisfying ιFε ⊆ Fε, and

a free involution π on the set of ι-fixed points in Fε.

Call G an ordinary graph if its exceptional cell is empty.
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Connected Wheel-Free Graphs

The elements in Flag(G) are called flags.

Flags in a non-exceptional cell are called ordinary flags. Flags
in the exceptional cell Fε are called exceptional flags.

Each non-exceptional partition subset Fα /= Fε is a vertex.

An empty vertex is an isolated vertex

A flag in a vertex is said to be adjacent to or attached to
that vertex.
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Connected Wheel-Free Graphs

An ι-fixed point is a leg of G . An ordinary leg (resp.,
exceptional leg) is an ordinary (resp., exceptional) flag that
is also a leg.

An ι-fixed point x ∈ Fε, the pair {x , πx} is an exceptional
edge.

A 2-cycle of the involution ι consisting of ordinary flags is an
ordinary edge. A 2-cycle of ι contained in a vertex is a loop
at that vertex. A 2-cycle of ι in the exceptional cell is an
exceptional loop.

An internal edge is a 2-cycle of ι, i.e., either an ordinary
edge or an exceptional loop.

An ordinary edge e = {e−1, e1} is said to be adjacent to or
attached to a vertex v if either (or both) ei ∈ v .

Philip Hackney, Marcy Robertson and Donald Yau Infinity Prop(erad)s



Connected Wheel-Free Graphs

A coloring of G is a function

Flag(G) κ // C

that is constant on orbits of both involutions ι and π.

A direction of G is a function

Flag(G) δ // {−1,1}

such that

if ιx /= x , then δ(ιx) = −δ(x), and
if x ∈ Fε, then δ(πx) = −δ(x).
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For G with direction, an input (resp., output) of a vertex is a
flag x such that δ(x) = 1 (resp., δ(x) = −1).

An input (resp., output) of G is a leg x such that δ(x) = 1
(resp., δ(x) = −1).

A listing for G with direction is a choice for each of a
bijection of pairs of sets

(in(u),out(u)) `u // ({1, . . . , ∣in(u)∣},{1, . . . , ∣out(u)∣}) ,

for each vertex in G
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Connected Wheel-Free Graphs

Definition

A C-colored wheeled graph, or just a wheeled graph, is a
generalized graph together with a choice of a coloring, a direction,
and a listing.
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Example

The empty graph ∅ has

Flag(∅) = ∅ =∐∅,

whose exceptional cell is ∅, and it has no non-exceptional partition
subsets. In particular, it has no vertices and no flags.
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Example

Suppose n is a positive integer. The union of n isolated vertices
is the graph Vn with

(Vn) = ∅ =
n+1

∐
i=1

∅.

It has an empty set of flags, an empty exceptional cell, and n
empty non-exceptional partition subsets, each of which is an
isolated vertex. For example, we can represent V3 pictorially as

● ● ●

with each ● representing an isolated vertex.
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Example

Pick a color c ∈ C. The c-colored exceptional edge is the graph
G whose only partition subset is the exceptional cell

Flag(G) = Fε = {f1, f−1},

with
ι(fi) = fi , κ(fi) = c , δ(fi) = i .

It can be represented pictorially as

c

in which the top (resp., bottom) half is f−1 (resp., f1). Note that
this graph has no vertices and has one exceptional edge.
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Example

The (d ; c)-corolla can be represented pictorially as the following
graph.

v

...

...

d1 dn

c1 cm

C(d ;c) corolla is the (d ; c)-wheeled graph with :

Flag (C(d ;c)) = {i1, . . . , im,o1, . . . ,on} .

v = Flag(G) as its only vertex; its exceptional cell is empty.

The structure maps: ι(ik) = ik and ι(oj) = oj for all k and j

κ(ik) = ck and κ(oj) = dj .

δ(ik) = 1 and δ(oj) = −1, and `u(ik) = k and `u(oj) = oj for
u ∈ {C(d ;c), v}.
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Connected Wheel-Free Graphs

A path in G is a pair

P = ((e j)r
j=1
, (vi)ri=0)

with r ≥ 0, in which

the vi are distinct vertices except possibly for v0 = vr ,
the e j are distinct ordinary edges, and
each e j is adjacent to both vj−1 and vj .
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Connected Wheel-Free Graphs

A path as above is said to have length r .

A path of length 0 is called a trivial path. A path of length
≥ 1 is called an internal path.

Given a path P as above, call v0 (resp., vr ) its initial vertex
(resp., terminal vertex). An end vertex means either an
initial vertex or a terminal vertex.

An internal path whose initial vertex is equal to its terminal
vertex is called a cycle. Otherwise, it is called a trail.

A directed path in G is an internal path P as above such
that each e j has initial vertex vj−1 and terminal vertex vj .

A wheel in G is a directed path that is also a cycle.

Philip Hackney, Marcy Robertson and Donald Yau Infinity Prop(erad)s



Connected Wheel-Free Graphs

A path as above is said to have length r .

A path of length 0 is called a trivial path. A path of length
≥ 1 is called an internal path.

Given a path P as above, call v0 (resp., vr ) its initial vertex
(resp., terminal vertex). An end vertex means either an
initial vertex or a terminal vertex.

An internal path whose initial vertex is equal to its terminal
vertex is called a cycle. Otherwise, it is called a trail.

A directed path in G is an internal path P as above such
that each e j has initial vertex vj−1 and terminal vertex vj .

A wheel in G is a directed path that is also a cycle.

Philip Hackney, Marcy Robertson and Donald Yau Infinity Prop(erad)s



Connected Wheel-Free Graphs

A path as above is said to have length r .

A path of length 0 is called a trivial path. A path of length
≥ 1 is called an internal path.

Given a path P as above, call v0 (resp., vr ) its initial vertex
(resp., terminal vertex). An end vertex means either an
initial vertex or a terminal vertex.

An internal path whose initial vertex is equal to its terminal
vertex is called a cycle. Otherwise, it is called a trail.

A directed path in G is an internal path P as above such
that each e j has initial vertex vj−1 and terminal vertex vj .

A wheel in G is a directed path that is also a cycle.

Philip Hackney, Marcy Robertson and Donald Yau Infinity Prop(erad)s



Connected Wheel-Free Graphs

A path as above is said to have length r .

A path of length 0 is called a trivial path. A path of length
≥ 1 is called an internal path.

Given a path P as above, call v0 (resp., vr ) its initial vertex
(resp., terminal vertex). An end vertex means either an
initial vertex or a terminal vertex.

An internal path whose initial vertex is equal to its terminal
vertex is called a cycle. Otherwise, it is called a trail.

A directed path in G is an internal path P as above such
that each e j has initial vertex vj−1 and terminal vertex vj .

A wheel in G is a directed path that is also a cycle.

Philip Hackney, Marcy Robertson and Donald Yau Infinity Prop(erad)s



Connected Wheel-Free Graphs

A path as above is said to have length r .

A path of length 0 is called a trivial path. A path of length
≥ 1 is called an internal path.

Given a path P as above, call v0 (resp., vr ) its initial vertex
(resp., terminal vertex). An end vertex means either an
initial vertex or a terminal vertex.

An internal path whose initial vertex is equal to its terminal
vertex is called a cycle. Otherwise, it is called a trail.

A directed path in G is an internal path P as above such
that each e j has initial vertex vj−1 and terminal vertex vj .

A wheel in G is a directed path that is also a cycle.

Philip Hackney, Marcy Robertson and Donald Yau Infinity Prop(erad)s



Connected Wheel-Free Graphs

A path as above is said to have length r .

A path of length 0 is called a trivial path. A path of length
≥ 1 is called an internal path.

Given a path P as above, call v0 (resp., vr ) its initial vertex
(resp., terminal vertex). An end vertex means either an
initial vertex or a terminal vertex.

An internal path whose initial vertex is equal to its terminal
vertex is called a cycle. Otherwise, it is called a trail.

A directed path in G is an internal path P as above such
that each e j has initial vertex vj−1 and terminal vertex vj .

A wheel in G is a directed path that is also a cycle.

Philip Hackney, Marcy Robertson and Donald Yau Infinity Prop(erad)s



G is called a connected graph if one of the following three
statements is true.

1 G is a single exceptional edge.

2 G is a single exceptional loop.

3 G satisfies all of the following conditions.

G is ordinary (i.e., has no exceptional flags).

G is not the empty graph.

For any two distinct vertices u and v in G , there exists an
internal path in G with u as its initial vertex and v as its
terminal vertex.
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Definition

Let Γ denote the (not full) subcategory of properads generated by
connected wheel-free graphs.

Definition

An ∞-properad is an object in SetΓop
that satisfies an inner horn

extension property.
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Final Notes

Whereas every object in the finite ordinal category ∆ and the
dendroidal category Ω has a finite set of elements, most
objects in the graphical category Γ have infinite sets of
elements.

the graphical analogs of the cosimplicial identities are not
entirely straightfoward to prove, i.e.

HARD.

General properad maps between them may exhibit bad
behavior that would never happen in ∆ and Ω.
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Properties

SetΓop
is closed, symmetric monoidal.

SetΓop
admits a cofibrantly generated model category

structure (in progress).

Can be used to study bi-algebra structures the way that
∞-operads are used to study algebra structures.
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