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@ A oo-prop(erad) is a generalization of a category in two
different ways.
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@ A oo-prop(erad) is a generalization of a category in two
different ways.

e A prop(erad) is a generalization of an ordinary category in
which composition is strictly associative.

. . f .
@ In an ordinary category, a morphism x —— y has one input
and one output.
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@ A oo-prop(erad) is a generalization of a category in two
different ways.

e A prop(erad) is a generalization of an ordinary category in
which composition is strictly associative.

. . f .
@ In an ordinary category, a morphism x —— y has one input
and one output.

@ We extend the notion of a category by allowing morphisms
with finite lists of objects as inputs and outputs.
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An operad is a generalization of a category in which a morphism
has one output and finitely many inputs, i.e.
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An operad is a generalization of a category in which a morphism
has one output and finitely many inputs, i.e.

f
(X1, yXn) ——y

with n > 0. We often call such a morphism an operation and
denote it by the following decorated graph.

y

o\

X1 Xn
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Composition of operations

(wi,...,wj)—==x

for each i, then the operadic composition v(f; g1,...,8n), is
represented by the following decorated 2-level tree.
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A properad allows both inputs and outputs to be finite lists of
objects, i.e.
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A properad allows both inputs and outputs to be finite lists of
objects, i.e.

f
(Xt5--eyXm) —— (V15 -, ¥n)

with m, n > 0. These operations are visualized as decorated corolla.

yio ... Y

X1 Xm
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The properadic composition is represented by partially grafted
corollas like

a

@ This properadic composition is defined when a non-empty
sub-list of the outputs of f match a non-empty sub-list of the
inputs of g.
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@ The second in which we extend the notion of a category
comes from relaxing the axioms.
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@ The second in which we extend the notion of a category
comes from relaxing the axioms.

In an oco-category, there might be many ways to form the
composition
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@ The second in which we extend the notion of a category
comes from relaxing the axioms.

In an oco-category, there might be many ways to form the
composition

@ Any two compositions are homotopic.
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@ The second in which we extend the notion of a category
comes from relaxing the axioms.

In an oco-category, there might be many ways to form the
composition

@ Any two compositions are homotopic.

@ Associativity holds up to homotopy.
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To make these ideas precise, we the language of Set®” .

e f and g are two 1-simplices in X that determine a unique
inner horn A'[2] - X, with g as the O-face and f as the
2-face.
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To make these ideas precise, we the language of Set®” .

e f and g are two 1-simplices in X that determine a unique
inner horn A'[2] - X, with g as the O-face and f as the
2-face.

@ composition exists is equivalent to saying this inner horn has
an extension to A[2] - X, so its 1-face is such a composition.
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To make these ideas precise, we the language of Set®” .

e f and g are two 1-simplices in X that determine a unique
inner horn A'[2] - X, with g as the O-face and f as the
2-face.

@ composition exists is equivalent to saying this inner horn has
an extension to A[2] - X, so its 1-face is such a composition.

Definition (Joyal, Lurie, Boardman-Vogt,...)

An oo-category is an object in Set®” in which every inner horn

with 0 < k < n has a filler. )
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o To define co-properads, we generalize Set®” .
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o To define co-properads, we generalize Set®” .

@ Notice that A can be represented using linear graphs, i.e. the
object
[n]={0<1<--<n}eA

is the category generated by the linear graph

with n vertices.

@ Here each vertex v; is the generating morphism i -1 — /.
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o Likewise, there is a category (2, the dendroidal category,
whose objects are operads generated by unital trees.
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o Likewise, there is a category (2, the dendroidal category,
whose objects are operads generated by unital trees.

@ Objects in the presheaf category Set®™ are called dendroidal
sets. They are tree-like analogs of simplicial sets.
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o Likewise, there is a category (2, the dendroidal category,
whose objects are operads generated by unital trees.

@ Objects in the presheaf category Set®™ are called dendroidal
sets. They are tree-like analogs of simplicial sets.

Definition (Moerdijk-Weiss)

An co-operad is an object in Set®” that satisfies an inner horn
extension property.
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@ Properadic compositions and their axioms are parametrized by
connected graphs without directed cycles, which we call
connected wheel-free graphs.
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@ Properadic compositions and their axioms are parametrized by
connected graphs without directed cycles, which we call
connected wheel-free graphs.

@ Fact: A connected wheel-free graph freely generates a
properad, called a graphical properad.
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@ Properadic compositions and their axioms are parametrized by
connected graphs without directed cycles, which we call
connected wheel-free graphs.

@ Fact: A connected wheel-free graph freely generates a
properad, called a graphical properad.

e Graphical properads form a (non-full) subcategory I' of
properads. We call ' the graphical category.

Definition (Hackney-R-Yau)

An oo-properad is an object in Set™” that satisfies an inner horn
extension property.
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Connected Wheel-Free Graphs

Fix an infinite set §.
A generalized graph G is a finite set Flag(G) c § with

@ a partition Flag(G) = [1,ca Fo with A finite,
@ a distinguished partition subset F. called the exceptional cell
@ an involution ¢ satisfying ¢F. € F¢, and

@ a free involution 7 on the set of -fixed points in F..
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Connected Wheel-Free Graphs

Fix an infinite set §.
A generalized graph G is a finite set Flag(G) c § with

@ a partition Flag(G) = [1,ca Fo with A finite,

@ a distinguished partition subset F. called the exceptional cell
@ an involution ¢ satisfying ¢F. € F¢, and

@ a free involution  on the set of (-fixed points in F..

e Call G an ordinary graph if its exceptional cell is empty.
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Connected Wheel-Free Graphs

@ The elements in Flag(G) are called flags.

@ Flags in a non-exceptional cell are called ordinary flags. Flags
in the exceptional cell F. are called exceptional flags.

e Each non-exceptional partition subset F, # F. is a vertex.
@ An empty vertex is an isolated vertex

@ A flag in a vertex is said to be adjacent to or attached to
that vertex.

Philip Hackney, Marcy Robertson and Donald Yau Infinity Prop(erad)s



Connected Wheel-Free Graphs

@ An (fixed point is a leg of G. An ordinary leg (resp.,
exceptional leg) is an ordinary (resp., exceptional) flag that
is also a leg.

@ An (-fixed point x € F, the pair {x,7x} is an exceptional
edge.

@ A 2-cycle of the involution ¢ consisting of ordinary flags is an
ordinary edge. A 2-cycle of « contained in a vertex is a loop
at that vertex. A 2-cycle of ¢ in the exceptional cell is an
exceptional loop.

@ An internal edge is a 2-cycle of ¢, i.e., either an ordinary
edge or an exceptional loop.

@ An ordinary edge e = {e_1, e1} is said to be adjacent to or
attached to a vertex v if either (or both) e; € v.
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Connected Wheel-Free Graphs

@ A coloring of G is a function
Flag(G) —— ¢
that is constant on orbits of both involutions ¢ and .
e A direction of G is a function
Flag(G) —— {-1,1}
such that

o if ux # x, then 0(ex) = —0(x), and
o if x € F., then §(mx) = -§(x).
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e For G with direction, an input (resp., output) of a vertex is a
flag x such that §(x) =1 (resp., (x) = -1).

@ An input (resp., output) of G is a leg x such that §(x) =1
(resp., 0(x) = -1).

@ A listing for G with direction is a choice for each of a
bijection of pairs of sets

(in(u),out(u)) BLTEN ({1,....lin(w)|},{1,...,|out(u)|}),

for each vertex in G
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Connected Wheel-Free Graphs

Definition
A C-colored wheeled graph, or just a wheeled graph, is a
generalized graph together with a choice of a coloring, a direction,

and a listing.
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Example

The empty graph @ has

Flag(2)=2=]] @,

whose exceptional cell is @, and it has no non-exceptional partition
subsets. In particular, it has no vertices and no flags.
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Example

Suppose n is a positive integer. The union of n isolated vertices
is the graph V|, with

n+1

(Vn)=o=]]2
i=1

It has an empty set of flags, an empty exceptional cell, and n
empty non-exceptional partition subsets, each of which is an
isolated vertex. For example, we can represent V3 pictorially as

with each e representing an isolated vertex.
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Example

Pick a color c € €. The c-colored exceptional edge is the graph
G whose only partition subset is the exceptional cell

Flag(G) = F.={fi, 1},

with
u(fi)=fi, kK(fi)=c,0(f;)=1i.

It can be represented pictorially as

E

in which the top (resp., bottom) half is f_; (resp., f1). Note that
this graph has no vertices and has one exceptional edge.
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Example
The (d; ¢)-corolla can be represented pictorially as the following
graph.

ch dn
Clezcm
Cd:c) corolla is the (d; c)-wheeled graph with :
°
F/ag (C(Q:E)) = {il, 5000 im, O, -y On} .
e v = Flag(G) as its only vertex; its exceptional cell is empty.
@ The structure maps: ¢(ix) = ix and ¢(0;) = o; for all k and
o r(ix) = ck and k(o)) = dj.
@ 0(ix)=1and §(0;) =-1, and ¢,(ix) = k and £,(0j) = o; for
ue {C(g;g),v}.
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Connected Wheel-Free Graphs

@ A pathin G is a pair

P=((&))4 - ()io)

with r >0, in which

e the v; are distinct vertices except possibly for vg = v,
o the € are distinct ordinary edges, and
o each €/ is adjacent to both v;_; and v;.
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Connected Wheel-Free Graphs

A path as above is said to have length r.
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Connected Wheel-Free Graphs

A path as above is said to have length r.

@ A path of length 0 is called a trivial path. A path of length
> 1 is called an internal path.
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Connected Wheel-Free Graphs

A path as above is said to have length r.

@ A path of length 0 is called a trivial path. A path of length
> 1 is called an internal path.

e Given a path P as above, call vy (resp., v;) its initial vertex
(resp., terminal vertex). An end vertex means either an
initial vertex or a terminal vertex.
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Connected Wheel-Free Graphs

A path as above is said to have length r.

@ A path of length 0 is called a trivial path. A path of length
> 1 is called an internal path.

e Given a path P as above, call vy (resp., v;) its initial vertex
(resp., terminal vertex). An end vertex means either an
initial vertex or a terminal vertex.

@ An internal path whose initial vertex is equal to its terminal
vertex is called a cycle. Otherwise, it is called a trail.
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Connected Wheel-Free Graphs

A path as above is said to have length r.

@ A path of length 0 is called a trivial path. A path of length
> 1 is called an internal path.

e Given a path P as above, call vy (resp., v;) its initial vertex
(resp., terminal vertex). An end vertex means either an
initial vertex or a terminal vertex.

@ An internal path whose initial vertex is equal to its terminal
vertex is called a cycle. Otherwise, it is called a trail.

o A directed path in G is an internal path P as above such
that each e/ has initial vertex v;_; and terminal vertex v;.
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Connected Wheel-Free Graphs

A path as above is said to have length r.

@ A path of length 0 is called a trivial path. A path of length
> 1 is called an internal path.

e Given a path P as above, call vy (resp., v;) its initial vertex
(resp., terminal vertex). An end vertex means either an
initial vertex or a terminal vertex.

@ An internal path whose initial vertex is equal to its terminal
vertex is called a cycle. Otherwise, it is called a trail.

o A directed path in G is an internal path P as above such
that each e/ has initial vertex v;_; and terminal vertex v;.

@ A wheel in G is a directed path that is also a cycle.
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G is called a connected graph if one of the following three
statements is true.

@ G is a single exceptional edge.
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G is called a connected graph if one of the following three
statements is true.

@ G is a single exceptional edge.

@ G is a single exceptional loop.
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G is called a connected graph if one of the following three
statements is true.

@ G is a single exceptional edge.

@ G is a single exceptional loop.

© G satisfies all of the following conditions.
o G is ordinary (i.e., has no exceptional flags).

o G is not the empty graph.

e For any two distinct vertices u and v in G, there exists an
internal path in G with u as its initial vertex and v as its
terminal vertex.
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Definition

Let I denote the (not full) subcategory of properads generated by
connected wheel-free graphs.

Definition

An oo-properad is an object in Set™” that satisfies an inner horn
extension property.
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Final Notes

@ Whereas every object in the finite ordinal category A and the
dendroidal category €2 has a finite set of elements, most
objects in the graphical category [ have infinite sets of
elements.

@ the graphical analogs of the cosimplicial identities are not
entirely straightfoward to prove, i.e.
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@ the graphical analogs of the cosimplicial identities are not
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Final Notes

@ Whereas every object in the finite ordinal category A and the
dendroidal category €2 has a finite set of elements, most
objects in the graphical category I have infinite sets of
elements.

@ the graphical analogs of the cosimplicial identities are not
entirely straightfoward to prove, i.e. HARD.

@ General properad maps between them may exhibit bad
behavior that would never happen in A and Q.
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Properties

op . . .
o Set'™ is closed, symmetric monoidal.
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op . . .
o Set'™ is closed, symmetric monoidal.

o Set'” admits a cofibrantly generated model category
structure (in progress).
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op . . .
o Set'™ is closed, symmetric monoidal.

o Set'” admits a cofibrantly generated model category
structure (in progress).

@ Can be used to study bi-algebra structures the way that
oo-operads are used to study algebra structures.

Philip Hackney, Marcy Robertson and Donald Yau Infinity Prop(erad)s



