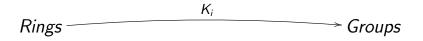
Equivariant Algebraic K-theory

Mona Merling

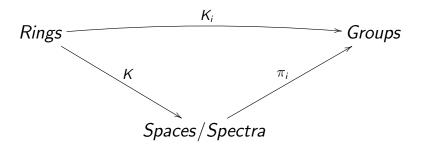
Department of Mathematics University of Chicago

January 2014

Algebraic K-theory functor



Algebraic K-theory functor



The input category *Rings* can be replaced with *ExactCat* or *WaldhausenCat*.

Why do we care about algebraic K-theory?

Algebraic K-theory is the meeting ground for various other subjects such as

- algebraic geometry,
- number theory,
- algebraic topology,

and it encodes deep information about these.

Why do we care about algebraic K-theory?

Example (Number theory)

Let $\mathbb{Q}(\zeta_p)^+$ be the maximal real subfield of $\mathbb{Q}(\zeta_p)$ and $h_{\mathbb{Q}(\zeta_p)^+}$ its class number. Then

$$p \nmid h_{\mathbb{Q}(\zeta_p)^+} \iff K_{4i}(\mathbb{Z}) = 0$$
 for all *i*.

Example (Manifold theory)

The Waldhausen K-theory spectrum of a manifold M decomposes as

$$A(M) \simeq \Sigma^{\infty} M_+ \times W H^{PL}(M),$$

where the second factor encodes information about pseudo-isotopies on M.

Why do we care about algebraic K-theory?

Example (Number theory)

Let $\mathbb{Q}(\zeta_p)^+$ be the maximal real subfield of $\mathbb{Q}(\zeta_p)$ and $h_{\mathbb{Q}(\zeta_p)^+}$ its class number. Then

$$p \nmid h_{\mathbb{Q}(\zeta_p)^+} \iff K_{4i}(\mathbb{Z}) = 0$$
 for all *i*.

Example (Manifold theory)

The Waldhausen K-theory spectrum of a manifold M decomposes as

$$A(M) \simeq \Sigma^{\infty} M_+ \times W H^{PL}(M),$$

where the second factor encodes information about pseudo-isotopies on M.

G-actions in algebraic K-theory, a motivating example

Suppose E/F is a (finite) Galois extension with Galois group G. Then G acts on KE and

$$(KE)^G = KF.$$

We have a map from the fixed points to the homotopy fixed points

$$(KE)^G o (KE)^{hG}$$

induced by

$$(KE)^{G} = Map(*, KE)^{G} \rightarrow Map(EG, KE)^{G}.$$

Initial Quillen-Lichtenbaum conjecture

Conjecture (Lichtenbaum-Quillen)

The map

$$KF \rightarrow KE^{hG}$$

is an equivalence after p-completion.

Theorem (Thomason)

The conjecture becomes true only after inverting a "Bott element" and reducing mod a prime power.

Initial Quillen-Lichtenbaum conjecture

Conjecture (Lichtenbaum-Quillen)

The map

$$KF \rightarrow KE^{hG}$$

is an equivalence after p-completion.

Theorem (Thomason)

The conjecture becomes true only after inverting a "Bott element" and reducing mod a prime power.

My goal

The goal is to tell an equivariant story...

Question: What kind of equivariant spectra are there?

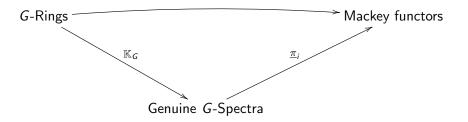
- **naive** *G*-spectra (spectra with *G*-action)
- genuine *G*-spectra (indexed on *G*-representations, can suspend and desuspend with respect to representation spheres *S^V*, give rise to *RO*(*G*)-graded cohomology theories)

Naive G-spectra are the ones that arise naturally when G acts on the input.

But, genuine *G*-spectra are the "right" objects for equivariant stable homotopy theory.

My goal

GOAL: Encode a "naive" action on the input ring (or category) as a genuine *G*-spectrum.



Equivariant algebraic K-theory functor

Theorem (M.)

There is a functor $\mathbb{K}_G \colon G\text{-rings} \to genuine G\text{-spectra, which applied to}$

- the topological ring $\mathbb C$ with trivial G-action \longrightarrow yields KU_G
- the topological ring $\mathbb R$ with trivial G-action $\sim\!\!\sim\!\!\!\sim$ yields KO_G

 \bullet the topological ring $\mathbb C$ with $\mathbb Z/2$ conjugation action \longrightarrow yields Atiyah's KR

Theorem, continued

We recover the original Quillen-Lichtenbaum conjecture

Theorem (M.)

Let E/F be a Galois extension with group G. The map of spectra

 $\mathbb{K}_G(E)^G \to \mathbb{K}_G(E)^{hG}$

from fixed points to homotopy fixed points of the genuine G-spectrum $\mathbb{K}_G(E)$ is equivalent to the map

$$K(F) o K(E)^{hG},$$

where $K(E)^{hG}$ denotes the homotopy fixed points of the naive spectrum K(E).

In particular, $\mathbb{K}_G(E)^G \simeq \mathcal{K}(\mathbb{Q})$ for any Galois extension E/\mathbb{Q} !

Construction of the functor \mathbb{K}_{G}

2 steps:

- good space level definition
- equivariant delooping of this space

Step 1

Recall (or take as definition):

$$BGL(R)^+ \simeq \text{group completion of } \prod_n \underbrace{BGL_n(R)}_{\substack{\text{classifying spaces of principal } GL_n(R)-\text{bundles}}$$

Idea: Replace by equivariant $(G, GL(R) \rtimes G)$ -bundles when G acts on R.

.

Equivariant bundle theory

Let C be a G-category. Define: $\tilde{G} :=$ translation category of G $Cat(\tilde{G}, C) :=$ functor category, with G acting by conjugation

NOTES: $Cat(\tilde{G}, C) \simeq C$ nonequivariantly, and $B\tilde{G} \simeq EG$.

Theorem (Guillou, May, M.) Suppose G acts on Π . The canonical map $BCat(\tilde{G}, \tilde{\Pi}) \rightarrow BCat(\tilde{G}, \Pi),$

is a universal principal $(G, \Pi \rtimes G)$ -bundle.

Definition of K-theory space, equivariant plus-construction

Suppose R is a G-ring.

Definition

Define $K_G(R)$ to be the equivariant group completion of $BCat(\tilde{G}, \coprod GL_n(R))$.

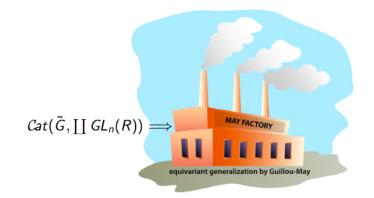
Question: Is this an equivariant infinite loop space?

 $Cat(\tilde{G}, \coprod GL_n(R))$ turns out to be an algebra over the genuine E_{∞} -operad as defined by Guillou-May.

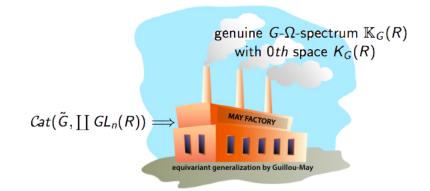
 $Cat(\tilde{G}, \coprod GL_n(R))$ turns out to be an algebra over the genuine E_{∞} -operad as defined by Guillou-May.

$Cat(\tilde{G}, \coprod GL_n(R)) \Longrightarrow$

 $Cat(\tilde{G}, \coprod GL_n(R))$ turns out to be an algebra over the genuine E_{∞} -operad as defined by Guillou-May.



 $Cat(\tilde{G}, \coprod GL_n(R))$ turns out to be an algebra over the genuine E_{∞} -operad as defined by Guillou-May.



Equivariant Segal machine

Issue: There is another equivariant infinite loop space machine, the equivariant version of Segal's machine, developed by Schimakawa.

Comparison theorem

Question: Do these equivariant infinite loop space machines produce equivalent outputs?

The proof of the nonequivariant comparison theorem of May-Thomason completely fails equivariantly!

Comparison theorem

Question: Do these equivariant infinite loop space machines produce equivalent outputs?

The proof of the nonequivariant comparison theorem of May-Thomason completely fails equivariantly!

Exact/ Waldhausen G-categories

For an exact/Waldhausen G-category C, $Cat(\tilde{G}, C)$ is also exact/Waldhausen.

Definition

Define $K_G(\mathcal{C})$ to be $\Omega QBCat(\tilde{G}, \mathcal{C})$ if \mathcal{C} is an exact G-category and $\Omega|wS_{\bullet}Cat(\tilde{G}, \mathcal{C})|$ if \mathcal{C} is a Waldhausen G-category.

Theorem (M.)

$$+ = Q = S_{\bullet}$$

Conjecture

```
K_G(\mathcal{C}) is an infinite loop G-space.
```

Future Directions

• K-theory of G-Waldhausen categories; do we have a splitting

$$A_G(M) \simeq \Sigma_G^{\infty} M_+ \times Wh_G^{PL}(M),$$

where $Wh_G^{PL}(M)$ encodes information about equivariant pseudo-isotopies of a *G*-manifold *M*?

• Carlsson's program for describing the *K*-theory of a field in terms of the representation theory of the absolute Galois group. (His map occurs as the fixed point map of the constructions I gave above.)

Future Directions

• K-theory of G-Waldhausen categories; do we have a splitting

$$A_G(M) \simeq \Sigma_G^{\infty} M_+ \times Wh_G^{PL}(M),$$

where $Wh_G^{PL}(M)$ encodes information about equivariant pseudo-isotopies of a *G*-manifold *M*?

• Carlsson's program for describing the *K*-theory of a field in terms of the representation theory of the absolute Galois group. (His map occurs as the fixed point map of the constructions I gave above.)

Thank you!!!