Power Operations and Commutative Ring Spectra

Sean M. Tilson

Royal Institute of Technology (KTH)

Joint Mathematics Meetings January 17th, 2014

- Compute power operations
- Interpret computations
- Motivate study of relative smash products

★ ∃ →

A D

1 Introduction

2 Künneth Spectral Sequence

3 Computations

- Complex Connective K-theory
- $BP\langle 2 \rangle$ at the prime 2
- Complex Cobordism

Interpretations

Commutative S-algebras and Power Operations

- We have well behaved categories of commutative S-algebras and module spectra over them,([EKMM]).
- The relative smash product is the pushout in commutative S-algebras.
- The product of a commutative S-algebra factors through the extended power (or homotopy orbit) construction.

.

Commutative S-algebras and Power Operations

- We have well behaved categories of commutative S-algebras and module spectra over them,([EKMM]).
- The relative smash product is the pushout in commutative S-algebras.
- The product of a commutative S-algebra factors through the extended power (or homotopy orbit) construction.

(These give power operations)

3 N 4 3 N

More Facts

- Power operations are preserved by commutative S-algebras maps.
- A commutative *E*-algebra has *E* theoretic operations.
- McClure, Mandell $\rightsquigarrow E = \operatorname{HF}_{p}$. $(Q^{i} : H_{n}(X) \rightarrow H_{i+n}(X))$
- Bruner $\rightsquigarrow E = S^0$.
- McClure $\rightsquigarrow E = K_p^{\wedge}$.
- Rezk (p = 2), Zhu (p = 3) $\rightsquigarrow E = E_2$.
- tom Dieck $\rightsquigarrow E = MU$.

くほし くほし くほし

Computing Relative Smash Products

Theorem (T., EKMM)

Let R a commutative S-algebra, A, B be right and left R-modules respectively.

- $E_2^{p,q} = \operatorname{Tor}_q^{\pi_*R}(\pi_*A, \pi_*B)_p \Longrightarrow \pi_{p+q}(A \wedge_R B).$
- A and B are commutative R-algebras then the KSS is multiplicative.

伺 ト く ヨ ト く ヨ ト

Computing Relative Smash Products

Theorem (T., EKMM)

Let R a commutative S-algebra, A, B be right and left R-modules respectively.

•
$$E_2^{p,q} = \operatorname{Tor}_q^{\pi_*R}(\pi_*A, \pi_*B)_p \Longrightarrow \pi_{p+q}(A \wedge_R B).$$

• A and B are commutative R-algebras then the KSS is multiplicative.

Proof.

Use a comparison theorem for filtrations.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Computing Relative Smash Products

Theorem (T., EKMM)

Let R a commutative S-algebra, A, B be right and left R-modules respectively.

- $E_2^{p,q} = \operatorname{Tor}_q^{\pi_*R}(\pi_*A, \pi_*B)_p \Longrightarrow \pi_{p+q}(A \wedge_R B).$
- A and B are commutative R-algebras then the KSS is multiplicative.

Proof.

Use a comparison theorem for filtrations.

The Künneth spectral sequence also supports a theory of power operations.

《曰》《聞》 《臣》 《臣》

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

The above allows us to use the KSS to compute the action of the DL algebra on $\pi_*(\mathrm{HF}_2 \wedge_R \mathrm{HF}_2)$.

- Compute $\operatorname{Tor}_*^{R_*}(\mathbb{F}_2,\mathbb{F}_2)_* \Rightarrow \pi_*\operatorname{H}\mathbb{F}_2 \wedge_R \operatorname{H}\mathbb{F}_2$.
- Compute $\operatorname{Tor}_*^{R_*}(\operatorname{H}\mathbb{F}_{2*}R,\mathbb{F}_2)_* \Rightarrow \operatorname{H}\mathbb{F}_{2*}\operatorname{H}\mathbb{F}_2.$
- Compare the two to compute operations in $\operatorname{H}\mathbb{F}_2 \wedge_R \operatorname{H}\mathbb{F}_2$.

- 4 同 6 4 日 6 4 日 6

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

Recollections

Theorem (Milnor)

The dual Steenrod algebra is $H\mathbb{F}_{2*}H\mathbb{F}_2 \cong \mathbb{F}_2[\xi_1,\xi_2,\xi_3,\ldots].$

Sean Tilson Power Operations and Commutative Ring Spectra

(日) (同) (三) (三)

э

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

Recollections

Theorem (Milnor)

The dual Steenrod algebra is $H\mathbb{F}_{2*}H\mathbb{F}_2 \cong \mathbb{F}_2[\xi_1, \xi_2, \xi_3, \ldots]$.

Remark

- $\mathrm{H}\mathbb{F}_{2*}\mathrm{H}\mathbb{F}_2$ is a Hopf algebra, $\chi(\xi_i) = \overline{\xi}_i$
- $\overline{\xi}_2 = \xi_1^3 + \xi_2$

(日) (同) (三) (三)

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

Recollections

Theorem (Milnor)

The dual Steenrod algebra is $H\mathbb{F}_{2*}H\mathbb{F}_2 \cong \mathbb{F}_2[\xi_1, \xi_2, \xi_3, \ldots]$.

Remark

•
$$\mathrm{H}\mathbb{F}_{2*}\mathrm{H}\mathbb{F}_2$$
 is a Hopf algebra, $\chi(\xi_i) = \overline{\xi}_i$

•
$$\overline{\xi}_2 = \xi_1^3 + \xi_2$$

Theorem (Steinberger)

•
$$Q^{2^i-2}(\xi_1) = \overline{\xi}_i \in \mathrm{H}\mathbb{F}_{2*}\mathrm{H}\mathbb{F}_2$$

•
$$Q^{2^i}(\overline{\xi}_i) = \overline{\xi}_{i+1} \in \mathrm{H}\mathbb{F}_{2*}\mathrm{H}\mathbb{F}_2$$
 for $i \ge 1$

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

Facts about ku

- *ku* is a commutative S-algebra.
- $\pi_* ku \cong \mathbb{Z}[v]$ with |v| = 2.
- $H\mathbb{F}_{2*}ku$ is a trivial ku_* -module.

•
$$\operatorname{HF}_{2*}ku \cong \operatorname{F}_{2}[\overline{\xi}_{1}^{2}, \overline{\xi}_{2}^{2}, \overline{\xi}_{3}, \overline{\xi}_{4}, \ldots].$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

Facts about *ku*

• *ku* is a commutative S-algebra.

•
$$\pi_* ku \cong \mathbb{Z}[v]$$
 with $|v| = 2$.

- $H\mathbb{F}_{2*}ku$ is a trivial ku_* -module.
- $\operatorname{H}\mathbb{F}_{2*}ku \cong \mathbb{F}_{2}[\overline{\xi}_{1}^{2}, \overline{\xi}_{2}^{2}, \overline{\xi}_{3}, \overline{\xi}_{4}, \ldots].$

同 ト イ ヨ ト イ ヨ ト

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

 $\operatorname{Tor}_{*}^{ku_{*}}(\mathbb{F}_{2},\mathbb{F}_{2})_{*} \Rightarrow \pi_{*}\operatorname{H}\mathbb{F}_{2} \wedge_{ku} \operatorname{H}\mathbb{F}_{2}$

<ロト <部ト < 注ト < 注ト

э

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

$$\operatorname{Tor}_{*}^{ku_{*}}(\mathrm{H}\mathbb{F}_{2*}ku,\mathbb{F}_{2})_{*} \Rightarrow \mathrm{H}\mathbb{F}_{2*}\mathrm{H}\mathbb{F}_{2}$$

<ロ> <同> <同> < 同> < 同>

æ

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

We compute the action of the Dyer-Lashof algebra as follows.

- $Q^2(\xi_1) = \overline{\xi}_2 \text{ in } \mathrm{H}\mathbb{F}_{2*}\mathrm{H}\mathbb{F}_2.$
- $\overline{\xi}_2 = \xi_1^3 + \xi_2$ in $\mathrm{H}\mathbb{F}_{2*}\mathrm{H}\mathbb{F}_2$.
- $\overline{2}$ detects ξ_1 in the spectral sequence converging to $H\mathbb{F}_{2*}H\mathbb{F}_2$.
- \overline{v} detects either ξ_2 or $\overline{\xi}_2$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

We compute the action of the Dyer-Lashof algebra as follows.

- $Q^2(\xi_1) = \overline{\xi}_2 \text{ in } \mathrm{H}\mathbb{F}_{2*}\mathrm{H}\mathbb{F}_2.$
- $\overline{\xi}_2 = \xi_1^3 + \xi_2$ in $\operatorname{H}\mathbb{F}_{2*}\operatorname{H}\mathbb{F}_2$.
- $\overline{2}$ detects ξ_1 in the spectral sequence converging to $H\mathbb{F}_{2*}H\mathbb{F}_2$.
- \overline{v} detects either ξ_2 or $\overline{\xi}_2$

Proposition (T.)

 $\begin{array}{l} \operatorname{Tor}_{*}^{ku_{*}}(\mathbb{F}_{2},\mathbb{F}_{2})_{*} \Rightarrow \pi_{*}\operatorname{HF}_{2} \wedge_{ku} \operatorname{HF}_{2} \text{ collapses at } E_{2}.\\ \pi_{*}\operatorname{HF}_{2} \wedge_{ku} \operatorname{HF}_{2} \cong E[\overline{2},\overline{\nu}] \text{ with } Q^{2}(\overline{2}) = \overline{\nu} \text{ where } |\overline{2}| = 1 \text{ and } \\ |\overline{\nu}| = 3. \end{array}$

・ロ・ ・ 四・ ・ ヨ・ ・

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

Facts about Lawson and Naumann's $BP\langle 2 \rangle$

- $BP\langle 2 \rangle$ is a commutative S-algebra at the prime 2.
- $\pi_*BP\langle 2 \rangle \cong \mathbb{Z}_{(2)}[v_1, v_2]$ with $|v_1| = 2$ and $|v_2| = 6$.
- $H\mathbb{F}_{2*}BP\langle 2 \rangle$ is a trivial $BP\langle 2 \rangle_*$ -module.
- $\operatorname{HF}_{2*}BP\langle 2 \rangle \cong \mathbb{F}_2[\overline{\xi}_1^2, \overline{\xi}_2^2, \overline{\xi}_3^2, \overline{\xi}_4, \overline{\xi}_5, \ldots].$

伺 ト イヨト イヨト

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

Facts about Lawson and Naumann's $BP\langle 2 \rangle$

- $BP\langle 2 \rangle$ is a commutative S-algebra at the prime 2.
- $\pi_*BP\langle 2 \rangle \cong \mathbb{Z}_{(2)}[v_1, v_2]$ with $|v_1| = 2$ and $|v_2| = 6$.
- $H\mathbb{F}_{2*}BP\langle 2 \rangle$ is a trivial $BP\langle 2 \rangle_*$ -module.
- $\operatorname{HF}_{2*}BP\langle 2 \rangle \cong \mathbb{F}_2[\overline{\xi}_1^2, \overline{\xi}_2^2, \overline{\xi}_3^2, \overline{\xi}_4, \overline{\xi}_5, \ldots].$

Proposition (T.)

•
$$\pi_* \mathrm{HF}_2 \wedge_{BP\langle 2 \rangle} \mathrm{HF}_2 \cong E[\overline{2}, \overline{v_1}, \overline{v_2}].$$

•
$$Q^2(\overline{2}) = \overline{v_1}$$
, $Q^6(\overline{2}) = \overline{v_2}$, $Q^4(\overline{v_1}) = \overline{v_2}$, and $Q^6(\overline{2}\overline{v_1}) = \overline{v_1v_2}$
where $|\overline{2}| = 1$, $|\overline{v_1}| = 3$ and $|\overline{v_2}| = 7$.

- 4 同 6 4 日 6 4 日 6

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

Facts about MU

- *MU* is a commutative S-algebra.
- $\pi_*MU \cong \mathbb{Z}[x_1, x_2, ...]$ with $|x_i| = 2i$.
- $H\mathbb{F}_{2*}MU$ is not a trivial MU_* -module, but it is manageable.
- $\operatorname{HF}_{2*}MU \cong P \otimes \operatorname{HF}_{2*}BP$.

- 4 同 6 4 日 6 4 日 6

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

Facts about MU

- *MU* is a commutative S-algebra.
- $\pi_*MU \cong \mathbb{Z}[x_1, x_2, ...]$ with $|x_i| = 2i$.
- $H\mathbb{F}_{2*}MU$ is not a trivial MU_* -module, but it is manageable.
- $\operatorname{H}\mathbb{F}_{2*}MU \cong P \otimes \operatorname{H}\mathbb{F}_{2*}BP$.

Proposition (T.)

•
$$\pi_* \operatorname{HF}_2 \wedge_{MU} \operatorname{HF}_2 \cong E[\overline{2}, \overline{x}_1, \overline{x}_2, \ldots].$$

•
$$Q^{2^i-2}(\overline{2}) = \overline{x}_{2^{i-1}-1}, \ Q^{2^i}(\overline{x}_{2^{i-1}-1}) = \overline{x}_{2^i-1} \text{ where } |\overline{2}| = 1 \text{ and } |\overline{x}_n| = 2n+1.$$

・ロト ・同ト ・ヨト ・ヨト

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

This computation has the following corollary.

Corollary (T.)

Let I be an ideal of MU_* generated by a regular sequence. If I contains a non-zero finite number of the x_{2^i-1} , then the quotient map $MU \rightarrow MU/I$ cannot be realized as a map of commutative \mathbb{S} -algebras.

・ロト ・同ト ・ヨト ・ヨト

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

This computation has the following corollary.

Corollary (T.)

Let I be an ideal of MU_* generated by a regular sequence. If I contains a non-zero finite number of the x_{2^i-1} , then the quotient map $MU \rightarrow MU/I$ cannot be realized as a map of commutative \mathbb{S} -algebras.

The above result is reminiscent of work of Strickland.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Complex Connective K-theory $BP\langle 2 \rangle$ at the prime 2 Complex Cobordism

This computation has the following corollary.

Corollary (T.)

Let I be an ideal of MU_* generated by a regular sequence. If I contains a non-zero finite number of the x_{2^i-1} , then the quotient map $MU \rightarrow MU/I$ cannot be realized as a map of commutative \mathbb{S} -algebras.

The above result is reminiscent of work of Strickland.

Proof.

Suppose there were such a $MU \rightarrow MU/I$. This induces

$$\mathrm{H}\mathbb{F}_2 \wedge_{\mathcal{M}\mathcal{U}} \mathrm{H}\mathbb{F}_2 \longrightarrow \mathrm{H}\mathbb{F}_2 \wedge_{\mathcal{M}\mathcal{U}/\mathcal{I}} \mathrm{H}\mathbb{F}_2$$

which must preserve power operations, but it can't.

< ロ > < 同 > < 回 > < 回 >

What does $Q^2(\overline{2}) = \overline{v}$ tell us? $\overline{2}$ is the "difference" of two null-homotopies of 2.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

What does $Q^2(\overline{2}) = \overline{v}$ tell us? $\overline{2}$ is the "difference" of two null-homotopies of 2.

What does $Q^2(\overline{2}) = \overline{v}$ tell us? $\overline{2}$ is the "difference" of two null-homotopies of 2.

What does $Q^2(\overline{2}) = \overline{v}$ tell us? $\overline{2}$ is the "difference" of two null-homotopies of 2.

Sean Tilson Power Operations and Commutative Ring Spectra

What does $Q^2(\overline{2}) = \overline{v}$ tell us? $\overline{2}$ is the "difference" of two null-homotopies of 2.

Sean Tilson Power Operations and Commutative Ring Spectra

Given maps of commutative $\ensuremath{\mathbb{S}}\xspace$ -algebras

P

∃ → < ∃</p>

э

Given maps of commutative $\ensuremath{\mathbb{S}}\xspace$ -algebras

And $d(f,g)_*(\overline{2}) = 0$ iff f and g cone off 2 in the same way.

And $d(f,g)_*(\overline{2}) = 0$ iff f and g cone off 2 in the same way.

And $d(f,g)_*(\overline{2}) = 0$ iff f and g cone off 2 in the same way.

Upshot

 f & g are maps of commutative ku-algebras ⇒ d(f,g) is a map of commutative HF₂-algebras.

- 4 同 6 4 日 6 4 日 6

э

Upshot

- f & g are maps of commutative ku-algebras ⇒ d(f,g) is a map of commutative HF₂-algebras.
- If $d(f,g)_*\overline{2} = 0$ then $d(f,g)_*(\overline{\nu}) = 0$ since $Q^2(\overline{2}) = \overline{\nu}$.

- 4 同 6 4 日 6 4 日 6

3

Upshot

- f & g are maps of commutative ku-algebras ⇒ d(f,g) is a map of commutative HF₂-algebras.
- If $d(f,g)_*\overline{2} = 0$ then $d(f,g)_*(\overline{\nu}) = 0$ since $Q^2(\overline{2}) = \overline{\nu}$.
- If f & g cone off 2 in the same way then they must cone off v in the same way.

Upshot

- f & g are maps of commutative ku-algebras ⇒ d(f,g) is a map of commutative HF₂-algebras.
- If $d(f,g)_*\overline{2} = 0$ then $d(f,g)_*(\overline{\nu}) = 0$ since $Q^2(\overline{2}) = \overline{\nu}$.
- If f & g cone off 2 in the same way then they must cone off v in the same way.
- While there is no homotopy operation relating 2 & v in $\pi_* ku$, they are related.

(4月) イヨト イヨト

Upshot

- f & g are maps of commutative ku-algebras ⇒ d(f,g) is a map of commutative HF₂-algebras.
- If $d(f,g)_*\overline{2} = 0$ then $d(f,g)_*(\overline{\nu}) = 0$ since $Q^2(\overline{2}) = \overline{\nu}$.
- If f & g cone off 2 in the same way then they must cone off v in the same way.
- While there is no homotopy operation relating 2 & v in $\pi_* ku$, they are related.
- By work of Mandell, HF₂ ∧_{ku} HF₂ can be thought of as an E_∞-dga. By the above, it detects some of the E_∞-structure of ku.

・ロト ・得ト ・ヨト ・ヨト

In general, we have the following result.

Theorem (T.)

If $\phi : R \to A$ is a map of commutative S-algebras that is surjective in homotopy. Then, $\forall x \in I := ker(\phi_*)$ with nonzero image in I/I^2 there is a nonzero class $\overline{x} \in \operatorname{Tor}_1^{R_*}(A_*, A_*)$. If this class is not an "eventual" boundary in the Künneth spectral sequence, then it can be realized as the difference of two null-homotopies of $\phi_*(x) \in A_*$.

In general, we have the following result.

Theorem (T.)

If $\phi : R \to A$ is a map of commutative S-algebras that is surjective in homotopy. Then, $\forall x \in I := ker(\phi_*)$ with nonzero image in I/I^2 there is a nonzero class $\overline{x} \in \operatorname{Tor}_1^{R_*}(A_*, A_*)$. If this class is not an "eventual" boundary in the Künneth spectral sequence, then it can be realized as the difference of two null-homotopies of $\phi_*(x) \in A_*$.

Proposition (T.)

If $\phi : R \to A$ is a map of commutative S-algebras over $H\mathbb{F}_2$. If $x \in \ker(\phi_*)$ and $Q^i(\overline{x}) = \overline{y} \in \operatorname{Tor}_1^{R_*}(\mathbb{F}_2, \mathbb{F}_2)$, then $\phi_*(y) \in \pi_*A$ is decomposable.

・ロト ・同ト ・ヨト ・ヨト