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Goals

Compute power operations

Interpret computations

Motivate study of relative smash products
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Commutative S-algebras and Power Operations

We have well behaved categories of commutative S-algebras
and module spectra over them,([EKMM]).

The relative smash product is the pushout in commutative
S-algebras.

The product of a commutative S-algebra factors through the
extended power (or homotopy orbit) construction.

X∧r
µ //

##

X

DrX
ξr

==

(These give power operations)
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More Facts

Power operations are preserved by commutative S-algebras
maps.

A commutative E -algebra has E theoretic operations.

McClure, Mandell  E = HFp. (Q i : Hn(X )→ Hi+n(X ))

Bruner  E = S0.

McClure  E = K∧p .

Rezk (p = 2), Zhu (p = 3)  E = E2.

tom Dieck  E = MU.
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Computing Relative Smash Products

Theorem (T.,EKMM)

Let R a commutative S-algebra, A,B be right and left R-modules
respectively.

Ep,q
2 = Torπ∗Rq (π∗A, π∗B)p =⇒ πp+q(A ∧R B).

A and B are commutative R-algebras then the KSS is
multiplicative.

Proof.

Use a comparison theorem for filtrations.

The Künneth spectral sequence also supports a theory of power
operations.

Sean Tilson Power Operations and Commutative Ring Spectra



Introduction
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Complex Connective K -theory
BP〈2〉 at the prime 2
Complex Cobordism

The above allows us to use the KSS to compute the action of the
DL algebra on π∗(HF2 ∧R HF2).

Compute TorR∗∗ (F2,F2)∗ ⇒ π∗HF2 ∧R HF2.

Compute TorR∗∗ (HF2∗R,F2)∗ ⇒ HF2∗HF2.

Compare the two to compute operations in HF2 ∧R HF2.

TorR∗s (HF2∗R,HF2∗)t +3

φ̌
��

HF2s+tHF2

φ̌

��
TorR∗s (F2,F2)t +3 πs+t(HF2 ∧R HF2).
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Recollections

Theorem (Milnor)

The dual Steenrod algebra is HF2∗HF2
∼= F2[ξ1, ξ2, ξ3, . . .].

Remark

HF2∗HF2 is a Hopf algebra, χ(ξi ) = ξi

ξ2 = ξ3
1 + ξ2

Theorem (Steinberger)

Q2i−2(ξ1) = ξi ∈ HF2∗HF2

Q2i (ξi ) = ξi+1 ∈ HF2∗HF2 for i ≥ 1
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Facts about ku

ku is a commutative S-algebra.

π∗ku ∼= Z [v ] with |v | = 2.

HF2∗ku is a trivial ku∗-module.

HF2∗ku ∼= F2[ξ
2
1, ξ

2
2, ξ3, ξ4, . . .].

Torku∗s (HF2∗ku,F2)t +3

φ̌
��

HF2s+tHF2

φ̌

��
Torku∗s (F2,F2)t +3 πs+t(HF2 ∧ku HF2).
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Torku∗
∗ (F2,F2)∗ ⇒ π∗HF2 ∧ku HF2

s

t + s
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Torku∗
∗ (HF2∗ku,F2)∗ ⇒ HF2∗HF2

s

t + s

0
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2 v , 2ξ2
1

ξ2
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1 ξ2
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· · ·
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We compute the action of the Dyer-Lashof algebra as follows.

Q2(ξ1) = ξ2in HF2∗HF2.

ξ2 = ξ3
1 + ξ2 in HF2∗HF2.

2 detects ξ1 in the spectral sequence converging to HF2∗HF2.

v detects either ξ2 or ξ2

Proposition (T.)

Torku∗∗ (F2,F2)∗ ⇒ π∗HF2 ∧ku HF2 collapses at E2.
π∗HF2 ∧ku HF2

∼= E [2, v ] with Q2(2) = v where |2| = 1 and
|v | = 3.
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Facts about Lawson and Naumann’s BP〈2〉

BP〈2〉 is a commutative S-algebra at the prime 2.

π∗BP〈2〉 ∼= Z(2) [v1, v2] with |v1| = 2 and |v2| = 6.

HF2∗BP〈2〉 is a trivial BP〈2〉∗-module.

HF2∗BP〈2〉 ∼= F2[ξ
2
1, ξ

2
2, ξ

2
3, ξ4, ξ5, . . .].

Proposition (T.)

π∗HF2 ∧BP〈2〉 HF2
∼= E [2, v1, v2].

Q2(2) = v1, Q6(2) = v2, Q4(v1) = v2, and Q6(2v1) = v1v2

where |2| = 1, |v1| = 3 and |v2| = 7.
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Facts about MU

MU is a commutative S-algebra.

π∗MU ∼= Z [x1, x2, ...] with |xi | = 2i .

HF2∗MU is not a trivial MU∗-module, but it is manageable.

HF2∗MU ∼= P ⊗HF2∗BP.

Proposition (T.)

π∗HF2 ∧MU HF2
∼= E [2, x1, x2, . . .].

Q2i−2(2) = x2i−1−1, Q2i (x2i−1−1) = x2i−1 where |2| = 1 and
|xn| = 2n + 1.

Sean Tilson Power Operations and Commutative Ring Spectra
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This computation has the following corollary.

Corollary (T.)

Let I be an ideal of MU∗ generated by a regular sequence. If I
contains a non-zero finite number of the x2i−1, then the quotient
map MU → MU/I cannot be realized as a map of commutative
S-algebras.

The above result is reminiscent of work of Strickland.

Proof.

Suppose there were such a MU → MU/I . This induces

HF2 ∧MU HF2 −→ HF2 ∧MU/I HF2

which must preserve power operations, but it can’t.

Sean Tilson Power Operations and Commutative Ring Spectra
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What does Q2(2) = v tell us? 2 is the “difference” of two
null-homotopies of 2.

S0

2

  
ku
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What does Q2(2) = v tell us? 2 is the “difference” of two
null-homotopies of 2.

S0

2

!!

0

��

0

''
ku

φ //

φ

��

HF2

HF2
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φ
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Given maps of commutative S-algebras

ku

φ

��

φ // HF2

f

��

HF2

g

// X .
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Given maps of commutative S-algebras

ku

φ

��

φ // HF2

φ∧1

��

f

��

HF2
1∧φ //

g

//

HF2 ∧ku HF2
d(f ,g)

&&
X .

And d(f , g)∗(2) = 0 iff f and g cone off 2 in the same way.
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Künneth Spectral Sequence

Computations
Interpretations
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And d(f , g)∗(2) = 0 iff f and g cone off 2 in the same way.

S0 i //

i

��

2

""

CS0

""

��

ku //

��

HF2

f

��

CS0

""

// S1

d(f ,g)◦2

!!

HF2

g

-- X .
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Upshot

f & g are maps of commutative ku-algebras ⇒ d(f , g) is a
map of commutative HF2-algebras.

If d(f , g)∗2 = 0 then d(f , g)∗(v) = 0 since Q2(2) = v .

If f & g cone off 2 in the same way then they must cone off v
in the same way.

While there is no homotopy operation relating 2 & v in π∗ku,
they are related.

By work of Mandell, HF2 ∧ku HF2 can be thought of as an
E∞-dga. By the above, it detects some of the E∞-structure of
ku.
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In general, we have the following result.

Theorem (T.)

If φ : R → A is a map of commutative S-algebras that is surjective
in homotopy. Then, ∀x ∈ I := ker(φ∗) with nonzero image in I/I 2

there is a nonzero class x ∈ TorR∗1 (A∗,A∗). If this class is not an
“eventual” boundary in the Künneth spectral sequence, then it can
be realized as the difference of two null-homotopies of φ∗(x) ∈ A∗.

Proposition (T.)

If φ : R → A is a map of commutative S-algebras over HF2. If
x ∈ ker(φ∗) and Q i (x) = y ∈ TorR∗1 (F2,F2), then φ∗(y) ∈ π∗A is
decomposable.
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