Power operation calculations in elliptic cohomology

Yifei Zhu

Northwestern University

Special session on homotopy theory 2014

Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

elliptic cohomology theory $=\left\{\begin{array}{ll}S, C / S, & E, \\ E^{0}(*) \cong S, & \operatorname{Spf} E^{0}\left(\mathbb{C P} P^{\infty}\right) \cong \widehat{C}\end{array}\right\}$

Theorem (Goerss-Hopkins-Miller)

$\mathcal{E}:\{$ formal groups over perfect fields, isos $\} \rightarrow\left\{E_{\infty}\right.$-ring spectra $\}$

- Spf $E^{0}\left(\mathbb{C P}{ }^{\infty}\right)=$ the univ deformation of a $\mathrm{fg} F$ of height n over a perfect field k of char p
- $E_{*}=\pi_{*} E \cong \mathbb{W}(k) \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right], \quad|u|=2$

Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland '01, Lurie '09)
elliptic cohomology theory $=\left\{\begin{array}{ll}S, C / S, & E, \\ E^{0}(*) \cong S, & \operatorname{Spf} E^{0}\left(\mathbb{C P} P^{\infty}\right) \cong \widehat{C}\end{array}\right\}$

Theorem (Goerss-Hopkins-Miller)

$\mathcal{E}:\{$ formal groups over perfect fields, isos $\} \rightarrow\left\{E_{\infty}\right.$-ring spectra $\}$

- Spf $E^{0}\left(\mathbb{C P}^{\infty}\right)=$ the univ deformation of a fg F of height n over a perfect field k of char p
- $E_{*}=\pi_{*} E \cong \mathbb{W}(k) \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right], \quad|u|=2$

Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

elliptic cohomology theory $=\left\{\begin{array}{ll}S, C / S, & E, \\ E^{0}(*) \cong S, & \operatorname{Spf} E^{0}\left(\mathbb{C P P}^{\infty}\right) \cong \widehat{C}\end{array}\right\}$

Theorem (Goerss-Hopkins-Miller)

$\mathcal{E}:\{$ formal groups over perfect fields, isos $\} \rightarrow\left\{E_{\infty}\right.$-ring spectra $\}$

- Spf $E^{0}\left(\mathbb{C} \mathbb{P}^{\infty}\right)=$ the univ deformation of a $\mathrm{fg} F$ of height n over a perfect field k of char p
- $E_{*}=\pi_{*} E \cong \mathbb{W}(k) \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right], \quad|u|=2$

Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

elliptic cohomology theory $=\left\{\begin{array}{ll}S, C / S, & E, \\ E^{0}(*) \cong S, & \operatorname{Spf} E^{0}\left(\mathbb{C P P}^{\infty}\right) \cong \widehat{C}\end{array}\right\}$

Theorem (Goerss-Hopkins-Miller)

$\mathcal{E}:\{$ formal groups over perfect fields, isos $\} \rightarrow\left\{E_{\infty}\right.$-ring spectra $\}$

- Spf $E^{0}\left(\mathbb{C} \mathbb{P}^{\infty}\right)=$ the univ deformation of a $\mathrm{fg} F$ of height n over a perfect field k of char p
- $E_{*}=\pi_{*} E \cong \mathbb{W}(k) \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right], \quad|u|=2$

Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

elliptic cohomology theory $=\left\{\begin{array}{l}S, C / S, \quad E, \\ E^{0}(*) \cong S, \quad \operatorname{Spf} E^{0}\left(\mathbb{C P}^{\infty}\right) \cong \widehat{C}\end{array}\right\}$

Theorem (Goerss-Hopkins-Miller)

$\mathcal{E}:\{$ formal groups over perfect fields, isos $\} \rightarrow\left\{E_{\infty}\right.$-ring spectra $\}$

- Spf $E^{0}\left(\mathbb{C P}{ }^{\infty}\right)=$ the univ deformation of a $\mathrm{fg} F$ of height n over a perfect field k of char p
- $E_{*}=\pi_{*} E \cong \mathbb{W}(k) \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right], \quad|u|=2$

Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

elliptic cohomology theory $=\left\{\begin{array}{ll}S, C / S, & E, \\ E^{0}(*) \cong S, & \operatorname{Spf} E^{0}\left(\mathbb{C P}^{\infty}\right) \cong \widehat{C}\end{array}\right\}$

Theorem (Goerss-Hopkins-Miller)

$\mathcal{E}:\{$ formal groups over perfect fields, isos $\} \rightarrow\left\{E_{\infty}\right.$-ring spectra $\}$

- Spf $E^{0}\left(\mathbb{C P}^{\infty}\right)=$ the univ deformation of a fg F of height n over a perfect field k of char p
- $E_{*}=\pi_{*} E \cong \mathbb{W}(k) \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right], \quad|u|=2$

Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

elliptic cohomology theory $=\left\{\begin{array}{ll}S, C / S, & E, \\ E^{0}(*) \cong S, & \operatorname{Spf} E^{0}\left(\mathbb{C P}^{\infty}\right) \cong \widehat{C}\end{array}\right\}$

Theorem (Goerss-Hopkins-Miller)

$\mathcal{E}:\{$ formal groups over perfect fields, isos $\} \rightarrow\left\{E_{\infty}\right.$-ring spectra $\}$

- Spf $E^{0}\left(\mathbb{C P}^{\infty}\right)=$ the univ deformation of a fg F of height n over a perfect field k of char p
- $E_{*}=\pi_{*} E \cong \mathbb{W}(k) \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right], \quad|u|=2$

Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

elliptic cohomology theory $=\left\{\begin{array}{ll}S, C / S, & E, \\ E^{0}(*) \cong S, & \operatorname{Spf} E^{0}\left(\mathbb{C P}^{\infty}\right) \cong \widehat{C}\end{array}\right\}$

Theorem (Goerss-Hopkins-Miller)

$\mathcal{E}:\{$ formal groups over perfect fields, isos $\} \rightarrow\left\{E_{\infty}\right.$-ring spectra $\}$

- Spf $E^{0}\left(\mathbb{C P}^{\infty}\right)=$ the univ deformation of a fg F of height n over a perfect field k of char p
- $E_{*}=\pi_{*} E \cong \mathbb{W}(k) \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right], \quad|u|=2$

Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

elliptic cohomology theory $=\left\{\begin{array}{ll}S, C / S, & E, \\ E^{0}(*) \cong S, & \operatorname{Spf} E^{0}\left(\mathbb{C P}^{\infty}\right) \cong \widehat{C}\end{array}\right\}$

Theorem (Goerss-Hopkins-Miller)

$\mathcal{E}:\{$ formal groups over perfect fields, isos $\} \rightarrow\left\{E_{\infty}\right.$-ring spectra $\}$

- Spf $E^{0}\left(\mathbb{C P}^{\infty}\right)=$ the univ deformation of a fg F of height n over a perfect field k of char p
- $E_{*}=\pi_{*} E \cong \mathbb{W}(k) \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right], \quad|u|=2$

Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

elliptic cohomology theory $=\left\{\begin{array}{ll}S, C / S, & E, \\ E^{0}(*) \cong S, & \operatorname{Spf} E^{0}\left(\mathbb{C P}^{\infty}\right) \cong \widehat{C}\end{array}\right\}$

Theorem (Goerss-Hopkins-Miller)

$\mathcal{E}:\{$ formal groups over perfect fields, isos $\} \rightarrow\left\{E_{\infty}\right.$-ring spectra $\}$

- Spf $E^{0}\left(\mathbb{C P}^{\infty}\right)=$ the univ deformation of a fg F of height n over a perfect field k of char p
- $E_{*}=\pi_{*} E \cong \mathbb{W}(k) \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right], \quad|u|=2$

Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

elliptic cohomology theory $=\left\{\begin{array}{ll}S, C / S, & E, \\ E^{0}(*) \cong S, & \operatorname{Spf} E^{0}\left(\mathbb{C P}^{\infty}\right) \cong \widehat{C}\end{array}\right\}$

Theorem (Goerss-Hopkins-Miller)

$\mathcal{E}:\{$ formal groups over perfect fields, isos $\} \rightarrow\left\{E_{\infty}\right.$-ring spectra $\}$

- Spf $E^{0}\left(\mathbb{C P}^{\infty}\right)=$ the univ deformation of a fg F of height n over a perfect field k of char p
- $E_{*}=\pi_{*} E \cong \mathbb{W}(k) \llbracket u_{1}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm 1}\right], \quad|u|=2$

Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

elliptic cohomology theory $=\left\{\begin{array}{ll}S, C / S, & E, \\ E^{0}(*) \cong S, & \operatorname{Spf} E^{0}\left(\mathbb{C P}^{\infty}\right) \cong \widehat{C}\end{array}\right\}$

Theorem (Goerss-Hopkins-Miller)

$\mathcal{E}:\{$ formal groups over perfect fields, isos $\} \rightarrow\left\{E_{\infty}\right.$-ring spectra $\}$
$E=$ Morava E-theory of height n at the prime p
Goal explore the structure on E_{*}.

Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

elliptic cohomology theory $=\left\{\begin{array}{ll}S, C / S, & E, \\ E^{0}(*) \cong S, & \operatorname{Spf} E^{0}\left(\mathbb{C P}^{\infty}\right) \cong \widehat{C}\end{array}\right\}$

Theorem (Goerss-Hopkins-Miller)

$\mathcal{E}:\{$ formal groups over perfect fields, isos $\} \rightarrow\left\{E_{\infty}\right.$-ring spectra $\}$
$E=$ Morava E-theory of height n at the prime p
Goal explore the structure on E_{*}.

Elliptic cohomology and Morava E-theory

Definition (Ando-Hopkins-Strickland '01, Lurie '09)

elliptic cohomology theory $=\left\{\begin{array}{ll}S, C / S, & E, \\ E^{0}(*) \cong S, & \operatorname{Spf} E^{0}\left(\mathbb{C P}^{\infty}\right) \cong \widehat{C}\end{array}\right\}$

Theorem (Goerss-Hopkins-Miller)

$\mathcal{E}:\{$ formal groups over perfect fields, isos $\} \rightarrow\left\{E_{\infty}\right.$-ring spectra $\}$
$E=$ Morava E-theory of height n at the prime p
Goal explore the structure on E_{*}.

Power operations for Morava E-theory (height n prime p)

$M=E$-module $\quad \pi_{0} M=[S, M]_{S} \cong[E, M]_{E}$

$$
\mathbb{P}_{E}(M)=\bigvee_{i \geq 0} \mathbb{P}_{E}^{i}(M)=\bigvee_{i \geq 0}(\underbrace{M \wedge_{E} \cdots \wedge_{E} M}_{i \text {-fold }})_{h \Sigma_{i}}
$$

$A=$ commutative E-algebra
$=$ algebra for the monad \mathbb{P}_{E} with $\mu: \mathbb{P}_{E}(A) \rightarrow A$
total power operation $\psi^{i}: \pi_{0} A \rightarrow \pi_{0}\left(A^{B \Sigma_{i}^{+}}\right) \quad \stackrel{/ I}{\rightsquigarrow}$ additive $\forall \eta \in \pi_{0} \mathbb{P}_{E}^{i}(E)$, individual po $\left.Q_{\eta}: \pi_{0} A \rightarrow \pi_{0} A\right\}$

$$
E \xrightarrow{f_{n}} \mathbb{P}_{E}^{i}(E) \xrightarrow{\mathbb{P}_{E}^{i}\left(f_{x}\right)} \mathbb{P}_{E}^{i}(A) \hookrightarrow \mathbb{P}_{E}(A) \xrightarrow{\mu} A
$$

Power operations for Morava E-theory (height n prime p)

$M=E$-module $\quad \pi_{0} M=[S, M]_{S} \cong[E, M]_{E}$

$$
\mathbb{P}_{E}(M)=\bigvee_{i \geq 0} \mathbb{P}_{E}^{i}(M)=\bigvee_{i \geq 0}(\underbrace{M \wedge_{E} \cdots \wedge_{E} M}_{i \text {-fold }})_{h \Sigma_{i}}
$$

$A=$ commutative E-algebra
$=$ algebra for the monad \mathbb{P}_{E} with $\mu: \mathbb{P}_{E}(A) \rightarrow A$
total power operation $\psi^{i}: \pi_{0} A \rightarrow \pi_{0}\left(A^{B \Sigma_{i}^{+}}\right) \quad \stackrel{/ I}{\rightsquigarrow}$ additive $\forall \eta \in \pi_{0} \mathbb{P}_{E}^{i}(E)$, individual po $\left.Q_{\eta}: \pi_{0} A \rightarrow \pi_{0} A\right\}$

$$
E \xrightarrow{f_{n}} \mathbb{P}_{E}^{i}(E) \xrightarrow{\mathbb{P}_{E}^{i}\left(f_{x}\right)} \mathbb{P}_{E}^{i}(A) \hookrightarrow \mathbb{P}_{E}(A) \xrightarrow{\mu} A
$$

Power operations for Morava E-theory (height n prime p)

$M=E$-module $\quad \pi_{0} M=[S, M]_{S} \cong[E, M]_{E}$

$$
\mathbb{P}_{E}(M)=\bigvee_{i \geq 0} \mathbb{P}_{E}^{i}(M)=\bigvee_{i \geq 0}(\underbrace{M \wedge_{E} \cdots \wedge_{E} M}_{i \text {-fold }})_{h \Sigma_{i}}
$$

$A=$ commutative E-algebra
$=$ algebra for the monad \mathbb{P}_{E} with $\mu: \mathbb{P}_{E}(A) \rightarrow A$
total power operation $\psi^{i}: \pi_{0} A \rightarrow \pi_{0}\left(A^{B \Sigma_{i}^{+}}\right) \quad \underset{\forall}{\forall I}$ additive
$\forall \eta \in \pi_{0} \mathbb{P}_{E}^{i}(E)$, individual po $\left.Q_{\eta}: \pi_{0} A \rightarrow \pi_{0} A\right\}$

$$
E \xrightarrow{f_{\eta}} \mathbb{P}_{E}^{i}(E) \xrightarrow{\mathbb{P}_{E}^{i}\left(f_{x}\right)} \mathbb{P}_{E}^{i}(A) \hookrightarrow \mathbb{P}_{E}(A) \xrightarrow{\mu} A
$$

Power operations for Morava E-theory (height n prime p)

$M=E$-module $\quad \pi_{0} M=[S, M]_{S} \cong[E, M]_{E}$

$$
\mathbb{P}_{E}(M)=\bigvee_{i \geq 0} \mathbb{P}_{E}^{i}(M)=\bigvee_{i \geq 0}(\underbrace{M \wedge_{E} \cdots \wedge_{E} M}_{i \text {-fold }})_{h \Sigma_{i}}
$$

$A=$ commutative E-algebra
$=$ algebra for the monad \mathbb{P}_{E} with $\mu: \mathbb{P}_{E}(A) \rightarrow A$
$\left.\begin{array}{l}\text { total power operation } \psi^{i}: \pi_{0} A \rightarrow \pi_{0}\left(A^{B \Sigma_{i}^{+}}\right) \\ \forall \eta \in \pi_{0} \mathbb{P}^{i}(F) \text {, individual po } Q n: \pi_{0} A \rightarrow \pi_{0} A\end{array}\right\} \stackrel{/ I}{\rightsquigarrow}$ additive

$$
E \xrightarrow{f_{\eta}} \mathbb{P}_{E}^{i}(E) \xrightarrow{\mathbb{P}_{E}^{i}\left(f_{x}\right)} \mathbb{P}_{E}^{i}(A) \hookrightarrow \mathbb{P}_{E}(A) \xrightarrow{\mu} A
$$

Power operations for Morava E-theory (height n prime p)

$M=E$-module $\quad \pi_{0} M=[S, M]_{S} \cong[E, M]_{E}$

$$
\mathbb{P}_{E}(M)=\bigvee_{i \geq 0} \mathbb{P}_{E}^{i}(M)=\bigvee_{i \geq 0}(\underbrace{M \wedge_{E} \cdots \wedge_{E} M}_{i \text {-fold }})_{h \Sigma_{i}}
$$

$A=$ commutative E-algebra
$=$ algebra for the monad \mathbb{P}_{E} with $\mu: \mathbb{P}_{E}(A) \rightarrow A$
total power operation $\psi^{i}: \pi_{0} A \rightarrow \pi_{0}\left(A^{B \Sigma_{i}^{+}}\right) \quad \underset{\rightsquigarrow}{I I}$ additive $\forall \eta \in \pi_{0} \mathbb{P}_{E}^{i}(E)$, individual po $\left.Q_{\eta}: \pi_{0} A \rightarrow \pi_{0} A\right\}$

$$
E \xrightarrow{f_{\eta}} \mathbb{P}_{E}^{i}(E) \xrightarrow{\mathbb{P}_{E}^{i}\left(f_{x}\right)} \mathbb{P}_{E}^{i}(A) \hookrightarrow \mathbb{P}_{E}(A) \xrightarrow{\mu} A
$$

Power operations for Morava E-theory (height n prime p)

$M=E$-module $\quad \pi_{0} M=[S, M]_{S} \cong[E, M]_{E}$

$$
\mathbb{P}_{E}(M)=\bigvee_{i \geq 0} \mathbb{P}_{E}^{i}(M)=\bigvee_{i \geq 0}(\underbrace{M \wedge_{E} \cdots \wedge_{E} M}_{i \text {-fold }})_{h \Sigma_{i}}
$$

$A=$ commutative E-algebra
$=$ algebra for the monad \mathbb{P}_{E} with $\mu: \mathbb{P}_{E}(A) \rightarrow A$
total power operation $\psi^{i}: \pi_{0} A \rightarrow \pi_{0}\left(A^{B \Sigma_{i}^{+}}\right) \quad \underset{\sim}{/ I}$ additive $\forall \eta \in \pi_{0} \mathbb{P}_{E}^{i}(E)$, individual po $\left.Q_{\eta}: \pi_{0} A \rightarrow \pi_{0} A\right\}$

$$
E \xrightarrow{f_{\eta}} \mathbb{P}_{E}^{i}(E) \xrightarrow{\mathbb{P}_{E}^{i}\left(f_{x}\right)} \mathbb{P}_{E}^{i}(A) \hookrightarrow \mathbb{P}_{E}(A) \xrightarrow{\mu} A
$$

Power operations for Morava E-theory (height n prime p)

$M=E$-module $\quad \pi_{0} M=[S, M]_{S} \cong[E, M]_{E}$

$$
\mathbb{P}_{E}(M)=\bigvee_{i \geq 0} \mathbb{P}_{E}^{i}(M)=\bigvee_{i \geq 0}(\underbrace{M \wedge_{E} \cdots \wedge_{E} M}_{i \text {-fold }})_{h \Sigma_{i}}
$$

$A=$ commutative E-algebra
$=$ algebra for the monad \mathbb{P}_{E} with $\mu: \mathbb{P}_{E}(A) \rightarrow A$
total power operation $\left.\psi^{i}: \pi_{0} A \rightarrow \pi_{0}\left(A^{B \Sigma_{i}^{+}}\right)\right\} \stackrel{I}{\leadsto}$ additive $\forall \eta \in \pi_{0} \mathbb{P}_{E}^{i}(E)$, individual po $\left.Q_{\eta}: \pi_{0} A \rightarrow \pi_{0} A\right\}$

$$
E \xrightarrow{f_{\eta}} \mathbb{P}_{E}^{i}(E) \xrightarrow{\mathbb{P}_{E}^{i}\left(f_{x}\right)} \mathbb{P}_{E}^{i}(A) \hookrightarrow \mathbb{P}_{E}(A) \xrightarrow{\mu} A
$$

Power operations for Morava E-theory (height n prime p)

$M=E$-module $\quad \pi_{0} M=[S, M]_{S} \cong[E, M]_{E}$

$$
\mathbb{P}_{E}(M)=\bigvee_{i \geq 0} \mathbb{P}_{E}^{i}(M)=\bigvee_{i \geq 0}(\underbrace{M \wedge_{E} \cdots \wedge_{E} M}_{i \text {-fold }})_{h \Sigma_{i}}
$$

$A=$ commutative E-algebra
$=$ algebra for the monad \mathbb{P}_{E} with $\mu: \mathbb{P}_{E}(A) \rightarrow A$
total power operation $\left.\psi^{i}: \pi_{0} A \rightarrow \pi_{0}\left(A^{B \Sigma_{i}^{+}}\right)\right\} \stackrel{I}{\leadsto}$ additive $\forall \eta \in \pi_{0} \mathbb{P}_{E}^{i}(E)$, individual po $\left.Q_{\eta}: \pi_{0} A \rightarrow \pi_{0} A\right\}$

$$
E \xrightarrow{f_{\eta}} \mathbb{P}_{E}^{i}(E) \xrightarrow{\mathbb{P}_{E}^{i}\left(f_{x}\right)} \mathbb{P}_{E}^{i}(A) \hookrightarrow \mathbb{P}_{E}(A) \xrightarrow{\mu} A
$$

Power operations for Morava E-theory (height n prime p)

$M=E$-module $\quad \pi_{0} M=[S, M]_{S} \cong[E, M]_{E}$

$$
\mathbb{P}_{E}(M)=\bigvee_{i \geq 0} \mathbb{P}_{E}^{i}(M)=\bigvee_{i \geq 0}(\underbrace{M \wedge_{E} \cdots \wedge_{E} M}_{i \text {-fold }})_{h \Sigma_{i}}
$$

$A=$ commutative E-algebra
$=$ algebra for the monad \mathbb{P}_{E} with $\mu: \mathbb{P}_{E}(A) \rightarrow A$
total power operation $\left.\psi^{i}: \pi_{0} A \rightarrow \pi_{0}\left(A^{B \Sigma_{i}^{+}}\right)\right\} \stackrel{I}{\leadsto}$ additive $\forall \eta \in \pi_{0} \mathbb{P}_{E}^{i}(E)$, individual po $\left.Q_{\eta}: \pi_{0} A \rightarrow \pi_{0} A\right\}$

$$
E \xrightarrow{f_{\eta}} \mathbb{P}_{E}^{i}(E) \xrightarrow{\mathbb{P}_{E}^{i}\left(f_{x}\right)} \mathbb{P}_{E}^{i}(A) \hookrightarrow \mathbb{P}_{E}(A) \xrightarrow{\mu} A
$$

Power operations for Morava E-theory (height n prime p)

$M=E$-module $\quad \pi_{0} M=[S, M]_{S} \cong[E, M]_{E}$

$$
\mathbb{P}_{E}(M)=\bigvee_{i \geq 0} \mathbb{P}_{E}^{i}(M)=\bigvee_{i \geq 0}(\underbrace{M \wedge_{E} \cdots \wedge_{E} M}_{i \text {-fold }})_{h \Sigma_{i}}
$$

$A=$ commutative E-algebra
$=$ algebra for the monad \mathbb{P}_{E} with $\mu: \mathbb{P}_{E}(A) \rightarrow A$
total power operation $\left.\psi^{i}: \pi_{0} A \rightarrow \pi_{0}\left(A^{B \Sigma_{i}^{+}}\right)\right\} \stackrel{I}{\leadsto}$ additive $\forall \eta \in \pi_{0} \mathbb{P}_{E}^{i}(E)$, individual po $\left.Q_{\eta}: \pi_{0} A \rightarrow \pi_{0} A\right\}$

$$
E \xrightarrow{f_{\eta}} \mathbb{P}_{E}^{i}(E) \xrightarrow{\mathbb{P}_{E}^{i}\left(f_{x}\right)} \mathbb{P}_{E}^{i}(A) \hookrightarrow \mathbb{P}_{E}(A) \xrightarrow{\mu} A
$$

Power operations for Morava E-theory (height n prime p)

$M=E$-module $\quad \pi_{0} M=[S, M]_{S} \cong[E, M]_{E}$

$$
\mathbb{P}_{E}(M)=\bigvee_{i \geq 0} \mathbb{P}_{E}^{i}(M)=\bigvee_{i \geq 0}(\underbrace{M \wedge_{E} \cdots \wedge_{E} M}_{i \text {-fold }})_{h \Sigma_{i}}
$$

$A=$ commutative E-algebra
$=$ algebra for the monad \mathbb{P}_{E} with $\mu: \mathbb{P}_{E}(A) \rightarrow A$
total power operation $\psi^{i}: \pi_{0} A \rightarrow \pi_{0}\left(A^{B \Sigma_{i}^{+}}\right) \quad \underset{\sim}{/ I}$ additive $\forall \eta \in \pi_{0} \mathbb{P}_{E}^{i}(E)$, individual po $\left.Q_{\eta}: \pi_{0} A \rightarrow \pi_{0} A\right\}$

$$
E \xrightarrow{f_{n}} \mathbb{P}_{E}^{i}(E) \xrightarrow{\mathbb{P}_{E}^{i}\left(f_{x}\right)} \mathbb{P}_{E}^{i}(A) \hookrightarrow \mathbb{P}_{E}(A) \xrightarrow{\mu} A
$$

Power operations for Morava E-theory (height n prime p)

$M=E$-module $\quad \pi_{0} M=[S, M]_{S} \cong[E, M]_{E}$

$$
\mathbb{P}_{E}(M)=\bigvee_{i \geq 0} \mathbb{P}_{E}^{i}(M)=\bigvee_{i \geq 0}(\underbrace{M \wedge_{E} \cdots \wedge_{E} M}_{i \text {-fold }})_{h \Sigma_{i}}
$$

$A=$ commutative E-algebra
$=$ algebra for the monad \mathbb{P}_{E} with $\mu: \mathbb{P}_{E}(A) \rightarrow A$
total power operation $\psi^{i}: \pi_{0} A \rightarrow \pi_{0}\left(A^{B \Sigma_{i}^{+}}\right)$
$\forall \eta \in \pi_{0} \mathbb{P}_{E}^{i}(E)$, individual po $\left.Q_{\eta}: \pi_{0} A \rightarrow \pi_{0} A\right\}$

$$
E \xrightarrow{f_{n}} \mathbb{P}_{E}^{i}(E) \xrightarrow{\mathbb{P}_{E}^{i}\left(f_{x}\right)} \mathbb{P}_{E}^{i}(A) \hookrightarrow \mathbb{P}_{E}(A) \xrightarrow{\mu} A
$$

Power operations for Morava E-theory (height n prime p)

$M=E$-module $\quad \pi_{0} M=[S, M]_{S} \cong[E, M]_{E}$

$$
\mathbb{P}_{E}(M)=\bigvee_{i \geq 0} \mathbb{P}_{E}^{i}(M)=\bigvee_{i \geq 0}(\underbrace{M \wedge_{E} \cdots \wedge_{E} M}_{i \text {-fold }})_{h \Sigma_{i}}
$$

$A=$ commutative E-algebra
$=$ algebra for the monad \mathbb{P}_{E} with $\mu: \mathbb{P}_{E}(A) \rightarrow A$
total power operation $\psi^{i}: \pi_{0} A \rightarrow \pi_{0}\left(A^{B \Sigma_{i}^{+}}\right)$
$\forall \eta \in \pi_{0} \mathbb{P}_{E}^{i}(E)$, individual po $\left.Q_{\eta}: \pi_{0} A \rightarrow \pi_{0} A\right\}$

$$
E \xrightarrow{f_{n}} \mathbb{P}_{E}^{i}(E) \xrightarrow{\mathbb{P}_{E}^{i}\left(f_{x}\right)} \mathbb{P}_{E}^{i}(A) \hookrightarrow \mathbb{P}_{E}(A) \xrightarrow{\mu} A
$$

Power operations for Morava E-theory (height n prime p)

$M=E$-module $\quad \pi_{0} M=[S, M]_{S} \cong[E, M]_{E}$

$$
\mathbb{P}_{E}(M)=\bigvee_{i \geq 0} \mathbb{P}_{E}^{i}(M)=\bigvee_{i \geq 0}(\underbrace{M \wedge_{E} \cdots \wedge_{E} M}_{i \text {-fold }})_{h \Sigma_{i}}
$$

$A=$ commutative E-algebra
$=$ algebra for the monad \mathbb{P}_{E} with $\mu: \mathbb{P}_{E}(A) \rightarrow A$
total power operation $\psi^{i}: \pi_{0} A \rightarrow \pi_{0}\left(A^{B \Sigma_{i}^{+}}\right) \quad \underset{\sim}{\prime I}$ additive $\forall \eta \in \pi_{0} \mathbb{P}_{E}^{i}(E)$, individual po $\left.Q_{\eta}: \pi_{0} A \rightarrow \pi_{0} A\right\}$

$$
E \xrightarrow{f_{n}} \mathbb{P}_{E}^{i}(E) \xrightarrow{\mathbb{P}_{E}^{i}\left(f_{x}\right)} \mathbb{P}_{E}^{i}(A) \hookrightarrow \mathbb{P}_{E}(A) \xrightarrow{\mu} A
$$

Power operations for Morava E-theory (height n prime p)

Theorem (Rezk '09, Barthel-Frankland '13)
If $A=K(n)$-local commutative E-algebra, then
$A_{*}=$ graded amplified L-complete Γ-ring

- $\Gamma=$ twisted bialgebra over E_{0} (Dyer-Lashof algebra)
- $\exists Q_{0} \in \Gamma$ with $Q_{0}(x) \equiv x^{p} \bmod p$ (Frobenius congruence)

Goal make this structure explicit at $n=2, p=3$.
(Rezk '08, $n=2, p=2$)

Power operations for Morava E-theory (height n prime p)

Theorem (Rezk '09, Barthel-Frankland '13)

If $A=K(n)$-local commutative E-algebra, then

$$
A_{*}=\text { graded amplified } L \text {-complete } \Gamma \text {-ring }
$$

- $\Gamma=$ twisted bialgebra over E_{0} (Dyer-Lashof algebra)
- $\exists Q_{0} \in \Gamma$ with $Q_{0}(x) \equiv x^{p} \bmod p$ (Frobenius congruence)

Goal make this structure explicit at $n=2, p=3$.
(Rezk '08, $n=2, p=2$)

Power operations for Morava E-theory (height n prime p)

Theorem (Rezk '09, Barthel-Frankland '13)

If $A=K(n)$-local commutative E-algebra, then

$$
A_{*}=\text { graded amplified } L \text {-complete } \Gamma \text {-ring }
$$

- $\Gamma=$ twisted bialgebra over E_{0} (Dyer-Lashof algebra)
- $\exists Q_{0} \in \Gamma$ with $Q_{0}(x) \equiv x^{p} \bmod p$ (Frobenius congruence)

Goal make this structure explicit at $n=2, p=3$.
(Rezk '08, $n=2, p=2$)

Power operations for Morava E-theory (height n prime p)

Theorem (Rezk '09,

If $A=K(n)$-local commutative E-algebra, then

$$
A_{*}=\text { graded amplified } L \text {-complete } \Gamma \text {-ring }
$$

- $\Gamma=$ twisted bialgebra over E_{0} (Dyer-Lashof algebra)
- $\exists Q_{0} \in \Gamma$ with $Q_{0}(x) \equiv x^{p} \bmod p$ (Frobenius congruence)

Goal make this structure explicit at $n=2, p=3$.
(Rezk '08, $n=2, p=2$)

Power operations for Morava E-theory (height n prime p)

Theorem (Rezk '09, Barthel-Frankland '13)

If $A=K(n)$-local commutative E-algebra, then

$$
A_{*}=\text { graded amplified } L \text {-complete } \Gamma \text {-ring }
$$

- $\Gamma=$ twisted bialgebra over E_{0} (Dyer-Lashof algebra)
- $\exists Q_{0} \in \Gamma$ with $Q_{0}(x) \equiv x^{p} \bmod p$ (Frobenius congruence)

Goal make this structure explicit at $n=2, p=3$.
(Rezk '08, $n=2, p=2$)

Power operations for Morava E-theory (height n prime p)

Theorem (Rezk '09, Barthel-Frankland '13)

If $A=K(n)$-local commutative E-algebra, then

$$
A_{*}=\text { graded amplified } L \text {-complete } \Gamma \text {-ring }
$$

- $\Gamma=$ twisted bialgebra over E_{0} (Dyer-Lashof algebra)
- $\exists Q_{0} \in \Gamma$ with $Q_{0}(x) \equiv x^{p} \bmod p$ (Frobenius congruence)

Goal make this structure explicit at $n=2, p=3$.
(Rezk '08, $n=2, p=2$)

E-theory from a univ defo of a supersingular elliptic curve

fg of $E=$ the univ defo of a fg of ht 2 over a perfect field of char 3

Goal find an explicit model for this.
$C: y^{2}+a x y+a y=x^{3}+x^{2} \quad$ 4-torsion point $(0,0) \quad$ "universal"
over $S=\mathbb{Z}[1 / 4]\left[a, \Delta^{-1}\right]$ with $\Delta=a^{2}\left(a^{2}-16\right)$
$C / S=$ a univ defo of a ssing $C_{0} / \mathbb{F}_{9}\left(\mathbb{F}_{9} \cong S /(3, h), h=a^{2}+1\right)$
Bridge 1 (Serre-Tate '64)
$\widehat{C} / S_{(3, h)}^{\wedge}=$ the univ defo of $\widehat{C}_{0} / \mathbb{F}_{9}$ as formal groups

E-theory from a univ defo of a supersingular elliptic curve

fg of $E=$ the univ defo of a fg of ht 2 over a perfect field of char 3

Goal find an explicit model for this.
$C: y^{2}+a x y+a y=x^{3}+x^{2} \quad$ 4-torsion point $(0,0) \quad$ "universal"
over $S=\mathbb{Z}[1 / 4]\left[a, \Delta^{-1}\right]$ with $\Delta=a^{2}\left(a^{2}-16\right)$
$C / S=$ a univ defo of a ssing $C_{0} / \mathbb{F}_{9}\left(\mathbb{F}_{9} \cong S /(3, h), h=a^{2}+1\right)$
Bridge 1 (Serre-Tate '64)
$\widehat{C} / S_{(3, h)}^{\wedge}=$ the univ defo of $\widehat{C}_{0} / \mathbb{F}_{9}$ as formal groups

E-theory from a univ defo of a supersingular elliptic curve

fg of $E=$ the univ defo of a fg of ht 2 over a perfect field of char 3

Goal find an explicit model for this.
$C: y^{2}+a x y+a y=x^{3}+x^{2} \quad$ 4-torsion point $(0,0) \quad$ "universal"
over $S=\mathbb{Z}[1 / 4]\left[a, \Delta^{-1}\right]$ with $\Delta=a^{2}\left(a^{2}-16\right)$
$C / S=$ a univ defo of a ssing $C_{0} / \mathbb{F}_{9}\left(\mathbb{F}_{9} \cong S /(3, h), h=a^{2}+1\right)$
Bridge 1 (Serre-Tate '64)
$\widehat{C} / S_{(3, h)}^{\wedge}=$ the univ defo of $\widehat{C}_{0} / \mathbb{F}_{9}$ as formal groups

E-theory from a univ defo of a supersingular elliptic curve

fg of $E=$ the univ defo of a fg of ht 2 over a perfect field of char 3

Goal find an explicit model for this.
$C: y^{2}+a x y+a y=x^{3}+x^{2} \quad$ 4-torsion point $(0,0) \quad$ "universal"
over $S=\mathbb{Z}[1 / 4]\left[a, \Delta^{-1}\right]$ with $\Delta=a^{2}\left(a^{2}-16\right)$
$C / S=$ a univ defo of a ssing $C_{0} / \mathbb{F}_{9}\left(\mathbb{F}_{9} \cong S /(3, h), h=a^{2}+1\right)$
Bridge 1 (Serre-Tate '64)
$\widehat{C} / S_{(3, h)}^{\wedge}=$ the univ defo of $\widehat{C}_{0} / \mathbb{F}_{9}$ as formal groups

E-theory from a univ defo of a supersingular elliptic curve

fg of $E=$ the univ defo of a fg of ht 2 over a perfect field of char 3

Goal find an explicit model for this.
$C: y^{2}+a x y+a y=x^{3}+x^{2} \quad$ 4-torsion point $(0,0) \quad$ "universal"
over $S=\mathbb{Z}[1 / 4]\left[a, \Delta^{-1}\right]$ with $\Delta=a^{2}\left(a^{2}-16\right)$
$C / S=$ a univ defo of a ssing $C_{0} / \mathbb{F}_{9}\left(\mathbb{F}_{9} \cong S /(3, h), h=a^{2}+1\right)$
Bridge 1 (Serre-Tate '64)
$\widehat{C} / S_{(3, h)}^{\wedge}=$ the univ defo of $\widehat{C}_{0} / \mathbb{F}_{9}$ as formal groups

E-theory from a univ defo of a supersingular elliptic curve

fg of $E=$ the univ defo of a fg of ht 2 over a perfect field of char 3

Goal find an explicit model for this.
$C: y^{2}+a x y+a y=x^{3}+x^{2} \quad$ 4-torsion point $(0,0) \quad$ "universal" over $S=\mathbb{Z}[1 / 4]\left[a, \Delta^{-1}\right]$ with $\Delta=a^{2}\left(a^{2}-16\right)$
$C / S=$ a univ defo of a ssing $C_{0} / \mathbb{F}_{9}\left(\mathbb{F}_{9} \cong S /(3, h), h=a^{2}+1\right)$
Bridge 1 (Serre-Tate '64)
$\widehat{C} / S_{(3, h)}^{\wedge}=$ the univ defo of $\widehat{C}_{0} / \mathbb{F}_{9}$ as formal groups

E-theory from a univ defo of a supersingular elliptic curve

fg of $E=$ the univ defo of a fg of ht 2 over a perfect field of char 3

Goal find an explicit model for this.
$C: y^{2}+a x y+a y=x^{3}+x^{2} \quad$ 4-torsion point $(0,0) \quad$ "universal" over $S=\mathbb{Z}[1 / 4]\left[a, \Delta^{-1}\right]$ with $\Delta=a^{2}\left(a^{2}-16\right)$
$C / S=$ a univ defo of a ssing $C_{0} / \mathbb{F}_{9}\left(\mathbb{F}_{9} \cong S /(3, h), h=a^{2}+1\right)$
Bridge 1 (Serre-Tate '64)
$\widehat{C} / S_{(3, h)}^{\wedge}=$ the univ defo of $\widehat{C}_{0} / \mathbb{F}_{9}$ as formal groups

E-theory from a univ defo of a supersingular elliptic curve

fg of $E=$ the univ defo of a fg of ht 2 over a perfect field of char 3

Goal find an explicit model for this.
$C: y^{2}+a x y+a y=x^{3}+x^{2} \quad$ 4-torsion point $(0,0) \quad$ "universal" over $S=\mathbb{Z}[1 / 4]\left[a, \Delta^{-1}\right]$ with $\Delta=a^{2}\left(a^{2}-16\right)$
$C / S=$ a univ defo of a ssing $C_{0} / \mathbb{F}_{9}\left(\mathbb{F}_{9} \cong S /(3, h), h=a^{2}+1\right)$
Bridge 1 (Serre-Tate '64)
$\widehat{C} / S_{(3, h)}^{\wedge}=$ the univ defo of $\widehat{C}_{0} / \mathbb{F}_{9}$ as formal groups

E-theory from a univ defo of a supersingular elliptic curve

fg of $E=$ the univ defo of a fg of ht 2 over a perfect field of char 3

Goal find an explicit model for this.
$C: y^{2}+a x y+a y=x^{3}+x^{2} \quad$ 4-torsion point $(0,0) \quad$ "universal" over $S=\mathbb{Z}[1 / 4]\left[a, \Delta^{-1}\right]$ with $\Delta=a^{2}\left(a^{2}-16\right)$
$C / S=$ a univ defo of a ssing $C_{0} / \mathbb{F}_{9}\left(\mathbb{F}_{9} \cong S /(3, h), h=a^{2}+1\right)$
Bridge 1 (Serre-Tate '64)
$\widehat{C} / S_{(3, h)}^{\wedge}=$ the univ defo of $\widehat{C}_{0} / \mathbb{F}_{9}$ as formal groups

E-theory from a univ defo of a supersingular elliptic curve

fg of $E=$ the univ defo of a fg of ht 2 over a perfect field of char 3

Goal find an explicit model for this.
$C: y^{2}+a x y+a y=x^{3}+x^{2} \quad$ 4-torsion point $(0,0) \quad$ "universal" over $S=\mathbb{Z}[1 / 4]\left[a, \Delta^{-1}\right]$ with $\Delta=a^{2}\left(a^{2}-16\right)$
$C / S=$ a univ defo of a ssing $C_{0} / \mathbb{F}_{9}\left(\mathbb{F}_{9} \cong S /(3, h), h=a^{2}+1\right)$
Bridge 1 (Serre-Tate '64)
$\widehat{C} / S_{(3, h)}^{\wedge}=$ the univ defo of $\widehat{C}_{0} / \mathbb{F}_{9}$ as formal groups

E-theory from a univ defo of a supersingular elliptic curve

fg of $E=$ the univ defo of a fg of ht 2 over a perfect field of char 3

Goal find an explicit model for this.
$C: y^{2}+a x y+a y=x^{3}+x^{2} \quad$ 4-torsion point $(0,0) \quad$ "universal" over $S=\mathbb{Z}[1 / 4]\left[a, \Delta^{-1}\right]$ with $\Delta=a^{2}\left(a^{2}-16\right)$
$C / S=$ a univ defo of a ssing $C_{0} / \mathbb{F}_{9}\left(\mathbb{F}_{9} \cong S /(3, h), h=a^{2}+1\right)$
\Downarrow Bridge 1 (Serre-Tate '64)
$\widehat{C} / S_{(3, h)}^{\wedge}=$ the univ defo of $\widehat{C}_{0} / \mathbb{F}_{9}$ as formal groups

E-theory from a univ defo of a supersingular elliptic curve

Proposition (Z.)

$$
E_{*} \cong \mathbb{Z}_{9} \llbracket h \rrbracket\left[u^{ \pm 1}\right]
$$

$C: y^{2}+a x y+a y=x^{3}+x^{2} \quad$ 4-torsion point $(0,0) \quad$ "universal" over $S=\mathbb{Z}[1 / 4]\left[a, \Delta^{-1}\right]$ with $\Delta=a^{2}\left(a^{2}-16\right)$
$C / S=$ a univ defo of a ssing $C_{0} / \mathbb{F}_{9}\left(\mathbb{F}_{9} \cong S /(3, h), h=a^{2}+1\right)$
$\|$ Bridge 1 (Serre-Tate '64)
$\widehat{C} / S_{(3, h)}^{\wedge}=$ the univ defo of $\widehat{C}_{0} / \mathbb{F}_{9}$ as formal groups

E-theory from a univ defo of a supersingular elliptic curve

Proposition (Z.)

$$
E_{*} \cong \mathbb{Z}_{9} \llbracket h \rrbracket\left[u^{ \pm 1}\right]
$$

$C: y^{2}+a x y+a y=x^{3}+x^{2} \quad$ 4-torsion point $(0,0) \quad$ "universal" over $S=\mathbb{Z}[1 / 4]\left[a, \Delta^{-1}\right]$ with $\Delta=a^{2}\left(a^{2}-16\right)$
$C / S=$ a univ defo of a ssing $C_{0} / \mathbb{F}_{9}\left(\mathbb{F}_{9} \cong S /(3, h), h=a^{2}+1\right)$
$\|$ Bridge 1 (Serre-Tate '64)
$\widehat{C} / S_{(3, h)}^{\wedge}=$ the univ defo of $\widehat{C}_{0} / \mathbb{F}_{9}$ as formal groups

E-theory from a univ defo of a supersingular elliptic curve

Proposition (Z.)

$$
E_{*} \cong \mathbb{Z}_{9} \llbracket h \rrbracket\left[u^{ \pm 1}\right]
$$

$C: y^{2}+a x y+a y=x^{3}+x^{2} \quad$ 4-torsion point $(0,0) \quad$ "universal" over $S=\mathbb{Z}[1 / 4]\left[a, \Delta^{-1}\right]$ with $\Delta=a^{2}\left(a^{2}-16\right)$
$C / S=$ a univ defo of a ssing $C_{0} / \mathbb{F}_{9}\left(\mathbb{F}_{9} \cong S /(3, h), h=a^{2}+1\right)$
$\|$ Bridge 1 (Serre-Tate '64)
$\widehat{C} / S_{(3, h)}^{\wedge}=$ the univ defo of $\widehat{C}_{0} / \mathbb{F}_{9}$ as formal groups

E-theory from a univ defo of a supersingular elliptic curve

Proposition (Z.)

$$
E_{*} \cong \mathbb{Z}_{9} \llbracket h \rrbracket\left[u^{ \pm 1}\right]
$$

$C: y^{2}+a x y+a y=x^{3}+x^{2} \quad$ 4-torsion point $(0,0) \quad$ "universal" over $S=\mathbb{Z}[1 / 4]\left[a, \Delta^{-1}\right]$ with $\Delta=a^{2}\left(a^{2}-16\right)$
$C / S=$ a univ defo of a ssing $C_{0} / \mathbb{F}_{9}\left(\mathbb{F}_{9} \cong S /(3, h), h=a^{2}+1\right)$
$\|$ Bridge 1 (Serre-Tate '64)
$\widehat{C} / S_{(3, h)}^{\wedge}=$ the univ defo of $\widehat{C}_{0} / \mathbb{F}_{9}$ as formal groups

A total power operation from a univ defo of Frobenius

$\psi: C \rightarrow C / G$ restricts as $\psi_{0}: C_{0} \rightarrow C_{0}$ (3-power Frob)
\downarrow Bridge 2 (Ando-Hopkins-Strickland '04, Rezk '09)
$\psi^{3}: E^{0} \rightarrow E^{0} B \Sigma_{3} / I \cong \mathcal{O}_{\text {Sub }_{3}(\widehat{C})}($ Strickland '98)

Goal construct and compute explicitly $\psi: C \rightarrow C / G$.

A total power operation from a univ defo of Frobenius

$\psi: C \rightarrow C / G$ restricts as $\psi_{0}: C_{0} \rightarrow C_{0}$ (3-power Frob)
\downarrow Bridge 2 (Ando-Hopkins-Strickland '04, Rezk '09)
$\psi^{3}: E^{0} \rightarrow E^{0} B \Sigma_{3} / I \cong \mathcal{O}_{\text {Sub }_{3}(\widehat{C})}($ Strickland '98)

Goal construct and compute explicitly $\psi: C \rightarrow C / G$.

A total power operation from a univ defo of Frobenius

$\psi: C \rightarrow C / G$ restricts as $\psi_{0}: C_{0} \rightarrow C_{0}$ (3-power Frob)
\Downarrow Bridge 2 (Ando-Hopkins-Strickland '04, Rezk '09)
$\psi^{3}: E^{0} \rightarrow E^{0} B \Sigma_{3} / I \cong \mathcal{O}_{\text {Sub }_{3}(\widehat{C})}($ Strickland '98)

Goal construct and compute explicitly $\psi: C \rightarrow C / G$.

A total power operation from a univ defo of Frobenius

$\psi: C \rightarrow C / G$ restricts as $\psi_{0}: C_{0} \rightarrow C_{0}$ (3-power Frob)
\downarrow Bridge 2 (Ando-Hopkins-Strickland '04, Rezk '09)
$\psi^{3}: E^{0} \rightarrow E^{0} B \Sigma_{3} / I \cong \mathcal{O}_{\text {Sub }_{3}(\widehat{C})}$ (Strickland '98)

Goal construct and compute explicitly $\psi: C \rightarrow C / G$.

A total power operation from a univ defo of Frobenius

$\psi: C \rightarrow C / G$ restricts as $\psi_{0}: C_{0} \rightarrow C_{0}$ (3-power Frob)
\downarrow Bridge 2 (Ando-Hopkins-Strickland '04, Rezk '09)
$\psi^{3}: E^{0} \rightarrow E^{0} B \Sigma_{3} / I \cong \mathcal{O}_{\text {Sub }_{3}(\widehat{C})}($ Strickland '98)

Goal construct and compute explicitly $\psi: C \rightarrow C / G$.

A total power operation from a univ defo of Frobenius

$\psi: C \rightarrow C / G$ restricts as $\psi_{0}: C_{0} \rightarrow C_{0}$ (3-power Frob)
\downarrow Bridge 2 (Ando-Hopkins-Strickland '04, Rezk '09)
$\psi^{3}: E^{0} \rightarrow E^{0} B \Sigma_{3} / I \cong \mathcal{O}_{\text {Sub }_{3}(\widehat{C})}($ Strickland '98)

Goal construct and compute explicitly $\psi: C \rightarrow C / G$.

A total power operation from a univ defo of Frobenius

$\psi: C \rightarrow C / G$ restricts as $\psi_{0}: C_{0} \rightarrow C_{0}$ (3-power Frob)
\downarrow Bridge 2 (Ando-Hopkins-Strickland '04, Rezk '09)
$\psi^{3}: E^{0} \rightarrow E^{0} B \Sigma_{3} / I \cong \mathcal{O}_{\text {Sub }_{3}(\widehat{C})}($ Strickland '98)

Goal construct and compute explicitly $\psi: C \rightarrow C / G$.

A total power operation from a univ defo of Frobenius

Theorem (Z.)

The universal deformation of Frobenius

$$
\psi: C \longrightarrow C / G=C^{\prime}
$$

is defined over $S_{3} \cong S[\alpha] /\left(\alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3\right)$, where

$$
\begin{gathered}
C^{\prime}: y^{2}+a^{\prime} x y+a^{\prime} y=x^{3}+x^{2} \quad \text { with } \\
a^{\prime}=a^{3}-12 a+12 a^{-1}+\left(-6 a+20 a^{-1}\right) \alpha+4 a^{-1} \alpha^{2}+\left(a-4 a^{-1}\right) \alpha^{3}
\end{gathered}
$$

A total power operation from a univ defo of Frobenius

Theorem (Z.)

The universal deformation of Frobenius

$$
\psi: C \longrightarrow C / G=C^{\prime}
$$

is defined over $S_{3} \cong S[\alpha] /\left(\alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3\right)$, where

$$
\begin{gathered}
C^{\prime}: y^{2}+a^{\prime} x y+a^{\prime} y=x^{3}+x^{2} \quad \text { with } \\
a^{\prime}=a^{3}-12 a+12 a^{-1}+\left(-6 a+20 a^{-1}\right) \alpha+4 a^{-1} \alpha^{2}+\left(a-4 a^{-1}\right) \alpha^{3}
\end{gathered}
$$

A total power operation from a univ defo of Frobenius

Theorem (Z.)

The universal deformation of Frobenius

$$
\psi: C \longrightarrow C / G=C^{\prime}
$$

is defined over $S_{3} \cong S[\alpha] /\left(\alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3\right)$, where

$$
\begin{gathered}
C^{\prime}: y^{2}+a^{\prime} x y+a^{\prime} y=x^{3}+x^{2} \quad \text { with } \\
a^{\prime}=a^{3}-12 a+12 a^{-1}+\left(-6 a+20 a^{-1}\right) \alpha+4 a^{-1} \alpha^{2}+\left(a-4 a^{-1}\right) \alpha^{3}
\end{gathered}
$$

A total power operation from a univ defo of Frobenius

Theorem (Z.)

The total power operation

$$
\psi^{3}: E^{0} \longrightarrow E^{0} B \Sigma_{3} / I
$$

is defined over $S_{3} \cong S[\alpha] /\left(\alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3\right)$, where

$$
\begin{gathered}
C^{\prime}: y^{2}+a^{\prime} x y+a^{\prime} y=x^{3}+x^{2} \quad \text { with } \\
a^{\prime}=a^{3}-12 a+12 a^{-1}+\left(-6 a+20 a^{-1}\right) \alpha+4 a^{-1} \alpha^{2}+\left(a-4 a^{-1}\right) \alpha^{3}
\end{gathered}
$$

A total power operation from a univ defo of Frobenius

Theorem (Z.)

The total power operation

$$
\begin{gathered}
\psi^{3}: E^{0} \longrightarrow E^{0} B \Sigma_{3} / I \\
\cong E^{0}[\alpha] /\left(\alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3\right) \\
C^{\prime}: y^{2}+a^{\prime} x y+a^{\prime} y=x^{3}+x^{2} \quad \text { with } \\
a^{\prime}=a^{3}-12 a+12 a^{-1}+\left(-6 a+20 a^{-1}\right) \alpha+4 a^{-1} \alpha^{2}+\left(a-4 a^{-1}\right) \alpha^{3}
\end{gathered}
$$

A total power operation from a univ defo of Frobenius

Theorem (Z.)

The total power operation

$$
\begin{aligned}
\psi^{3}: E^{0} & \longrightarrow E^{0} B \Sigma_{3} / I \\
& \cong E^{0}[\alpha] /\left(\alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3\right)
\end{aligned}
$$

is given by

$$
a^{\prime}=a^{3}-12 a+12 a^{-1}+\left(-6 a+20 a^{-1}\right) \alpha+4 a^{-1} \alpha^{2}+\left(a-4 a^{-1}\right) \alpha^{3}
$$

A total power operation from a univ defo of Frobenius

Theorem (Z.)

The total power operation

$$
\begin{aligned}
\psi^{3}: E^{0} & \longrightarrow E^{0} B \Sigma_{3} / I \\
& \cong E^{0}[\alpha] /\left(\alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3\right)
\end{aligned}
$$

is given by
$\psi^{3}(a)=a^{3}-12 a+12 a^{-1}+\left(-6 a+20 a^{-1}\right) \alpha+4 a^{-1} \alpha^{2}+\left(a-4 a^{-1}\right) \alpha^{3}$ $\psi^{3}(h)=\psi^{3}\left(a^{2}+1\right)=\psi^{3}(a)^{2}+1=\cdots$

A total power operation from a univ defo of Frobenius

Theorem (Z.)

The total power operation

$$
\begin{aligned}
\psi^{3}: E^{0} & \longrightarrow E^{0} B \Sigma_{3} / I \\
& \cong E^{0}[\alpha] /\left(\alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3\right)
\end{aligned}
$$

is given by
$\psi^{3}(a)=a^{3}-12 a+12 a^{-1}+\left(-6 a+20 a^{-1}\right) \alpha+4 a^{-1} \alpha^{2}+\left(a-4 a^{-1}\right) \alpha^{3}$ $\psi^{3}(h)=\psi^{3}\left(a^{2}+1\right)=\psi^{3}(a)^{2}+1=\cdots$

A total power operation from a univ defo of Frobenius

Theorem (Z.)

The total power operation

$$
\begin{aligned}
\psi^{3}: E^{0} & \longrightarrow E^{0} B \Sigma_{3} / I \\
& \cong E^{0}[\alpha] /\left(\alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3\right)
\end{aligned}
$$

is given by
$\psi^{3}(a)=a^{3}-12 a+12 a^{-1}+\left(-6 a+20 a^{-1}\right) \alpha+4 a^{-1} \alpha^{2}+\left(a-4 a^{-1}\right) \alpha^{3}$ $\psi^{3}(h)=\psi^{3}\left(a^{2}+1\right)=\psi^{3}(a)^{2}+1=\cdots$

A total power operation from a univ defo of Frobenius

Theorem (Z.)

The total power operation

$$
\begin{aligned}
\psi^{3}: E^{0} & \longrightarrow E^{0} B \Sigma_{3} / I \\
& \cong E^{0}[\alpha] /\left(\alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3\right)
\end{aligned}
$$

is given by
$\psi^{3}(a)=a^{3}-12 a+12 a^{-1}+\left(-6 a+20 a^{-1}\right) \alpha+4 a^{-1} \alpha^{2}+\left(a-4 a^{-1}\right) \alpha^{3}$ $\psi^{3}(h)=\psi^{3}\left(a^{2}+1\right)=\psi^{3}(a)^{2}+1=\cdots$

Corollaries

Define individual power operations $Q_{i}: E^{0} \rightarrow E^{0}$ by

$$
\psi^{3}(x)=Q_{0}(x)+Q_{1}(x) \alpha+Q_{2}(x) \alpha^{2}+Q_{3}(x) \alpha^{3}
$$

Corollary (Z.)

An explicit presentation is given for the Dyer-Lashof algebra Γ of E, as a twisted bialgebra over $E^{0} \cong \mathbb{Z}_{9} \llbracket h \rrbracket$, in terms of the generators $Q_{0}, Q_{1}, Q_{2}, Q_{3}$, commutation relations between Q_{i} and h, Adem relations between Q_{i} and Q_{j}, and Cartan formulas.

Idea for Adem relations study $\psi^{3} \circ \psi^{3}$ by looking at $\psi \circ \psi$.

Corollaries

Define individual power operations $Q_{i}: E^{0} \rightarrow E^{0}$ by

$$
\psi^{3}(x)=Q_{0}(x)+Q_{1}(x) \alpha+Q_{2}(x) \alpha^{2}+Q_{3}(x) \alpha^{3}
$$

Corollary (Z.)

An explicit presentation is given for the Dyer-Lashof algebra Γ of E, as a twisted bialgebra over $E^{0} \cong \mathbb{Z}_{9} \llbracket h \rrbracket$, in terms of the generators $Q_{0}, Q_{1}, Q_{2}, Q_{3}$, commutation relations between Q_{i} and h, Adem relations between Q_{i} and Q_{j}, and Cartan formulas.

Idea for Adem relations study $\psi^{3} \circ \psi^{3}$ by looking at $\psi \circ \psi$.

Corollaries

Define individual power operations $Q_{i}: E^{0} \rightarrow E^{0}$ by

$$
\psi^{3}(x)=Q_{0}(x)+Q_{1}(x) \alpha+Q_{2}(x) \alpha^{2}+Q_{3}(x) \alpha^{3}
$$

Corollary (Z.)

An explicit presentation is given for the Dyer-Lashof algebra Γ of E, as a twisted bialgebra over $E^{0} \cong \mathbb{Z}_{9} \llbracket h \rrbracket$, in terms of the generators $Q_{0}, Q_{1}, Q_{2}, Q_{3}$, commutation relations between Q_{i} and h, Adem relations between Q_{i} and Q_{j}, and Cartan formulas.

Idea for Adem relations study $\psi^{3} \circ \psi^{3}$ by looking at $\psi \circ \psi$.

Corollaries

Define individual power operations $Q_{i}: E^{0} \rightarrow E^{0}$ by

$$
\psi^{3}(x)=Q_{0}(x)+Q_{1}(x) \alpha+Q_{2}(x) \alpha^{2}+Q_{3}(x) \alpha^{3}
$$

Corollary (Z.)

An explicit presentation is given for the Dyer-Lashof algebra Γ of E, as a twisted bialgebra over $E^{0} \cong \mathbb{Z}_{9} \llbracket h \rrbracket$, in terms of the generators $Q_{0}, Q_{1}, Q_{2}, Q_{3}$, commutation relations between Q_{i} and h, Adem relations between Q_{i} and Q_{j}, and Cartan formulas.

Idea for Adem relations study $\psi^{3} \circ \psi^{3}$ by looking at $\psi \circ \psi$.

Corollaries

Define individual power operations $Q_{i}: E^{0} \rightarrow E^{0}$ by

$$
\psi^{3}(x)=Q_{0}(x)+Q_{1}(x) \alpha+Q_{2}(x) \alpha^{2}+Q_{3}(x) \alpha^{3}
$$

Corollary (Z.)

An explicit presentation is given for the Dyer-Lashof algebra Γ of E, as a twisted bialgebra over $E^{0} \cong \mathbb{Z}_{9} \llbracket h \rrbracket$, in terms of the generators $Q_{0}, Q_{1}, Q_{2}, Q_{3}$, commutation relations between Q_{i} and h, Adem relations between Q_{i} and Q_{j}, and Cartan formulas.

Idea for Adem relations study $\psi^{3} \circ \psi^{3}$ by looking at $\psi \circ \psi$.

Corollaries

Define individual power operations $Q_{i}: E^{0} \rightarrow E^{0}$ by

$$
\psi^{3}(x)=Q_{0}(x)+Q_{1}(x) \alpha+Q_{2}(x) \alpha^{2}+Q_{3}(x) \alpha^{3}
$$

Corollary (Z.)

An explicit presentation is given for the Dyer-Lashof algebra Γ of E, as a twisted bialgebra over $E^{0} \cong \mathbb{Z}_{9} \llbracket h \rrbracket$, in terms of the generators $Q_{0}, Q_{1}, Q_{2}, Q_{3}$, commutation relations between Q_{i} and h, Adem relations between Q_{i} and Q_{j}, and Cartan formulas.

Idea for Adem relations study $\psi^{3} \circ \psi^{3}$ by looking at $\psi \circ \psi$.

Corollaries

$$
F=L_{K(1)} E
$$

$$
\begin{aligned}
F^{0} & \cong \mathbb{Z}_{9} \llbracket h \rrbracket\left[h^{-1}\right]_{3} \\
& =\left\{\sum_{n=-\infty}^{\infty} c_{n} h^{n} \mid c_{n} \in \mathbb{Z}_{9}, \lim _{n \rightarrow-\infty} c_{n}=0\right\}
\end{aligned}
$$

Corollary (Z.)

The $K(1)$-local power operation $\psi_{F}^{3}: F^{0} \rightarrow F^{0}$ is given by

$$
\psi_{F}^{3}(h)=h^{3}-27 h^{2}+183 h-180+186 h^{-1}+1674 h^{-2}+\cdots
$$

Corollaries

$$
F=L_{K(1)} E
$$

$$
\begin{aligned}
F^{0} & \cong \mathbb{Z}_{9} \llbracket h \rrbracket\left[h^{-1}\right] \hat{3} \\
& =\left\{\sum_{n=-\infty}^{\infty} c_{n} h^{n} \mid c_{n} \in \mathbb{Z}_{9}, \lim _{n \rightarrow-\infty} c_{n}=0\right\}
\end{aligned}
$$

Corollary (Z.)

The $K(1)$-local power operation $\psi_{F}^{3}: F^{0} \rightarrow F^{0}$ is given by

$$
\psi_{F}^{3}(h)=h^{3}-27 h^{2}+183 h-180+186 h^{-1}+1674 h^{-2}+\cdots
$$

Corollaries

$$
F=L_{K(1)} E
$$

$$
F^{0} \cong \mathbb{Z}_{9} \llbracket h \rrbracket\left[h^{-1}\right]_{3}^{\wedge}
$$

$$
=\left\{\sum_{n=-\infty}^{\infty} c_{n} h^{n} \mid c_{n} \in \mathbb{Z}_{9}, \lim _{n \rightarrow-\infty} c_{n}=0\right\}
$$

Corollary (Z.)

The $K(1)$-local power operation $\psi_{F}^{3}: F^{0} \rightarrow F^{0}$ is given by

$$
\psi_{F}^{3}(h)=h^{3}-27 h^{2}+183 h-180+186 h^{-1}+1674 h^{-2}+\cdots
$$

Corollaries

$$
F=L_{K(1)} E
$$

$$
F^{0} \cong \mathbb{Z}_{9} \llbracket h \rrbracket\left[h^{-1}\right]_{3}^{\wedge}
$$

$$
=\left\{\sum_{n=-\infty}^{\infty} c_{n} h^{n} \mid c_{n} \in \mathbb{Z}_{9}, \lim _{n \rightarrow-\infty} c_{n}=0\right\}
$$

Corollary (Z.)

The $K(1)$-local power operation $\psi_{F}^{3}: F^{0} \rightarrow F^{0}$ is given by

$$
\psi_{F}^{3}(h)=h^{3}-27 h^{2}+183 h-180+186 h^{-1}+1674 h^{-2}+\cdots
$$

Corollaries

$$
F=L_{K(1)} E
$$

$$
\begin{aligned}
F^{0} & \cong \mathbb{Z}_{9} \llbracket h \rrbracket\left[h^{-1}\right]_{3} \\
& =\left\{\sum_{n=-\infty}^{\infty} c_{n} h^{n} \mid c_{n} \in \mathbb{Z}_{9}, \lim _{n \rightarrow-\infty} c_{n}=0\right\}
\end{aligned}
$$

Corollary (Z.)

The $K(1)$-local power operation $\psi_{F}^{3}: F^{0} \rightarrow F^{0}$ is given by

$$
\psi_{F}^{3}(h)=h^{3}-27 h^{2}+183 h-180+186 h^{-1}+1674 h^{-2}+\cdots
$$

Corollaries

$$
F=L_{K(1)} E
$$

$$
\begin{aligned}
F^{0} & \cong \mathbb{Z}_{9} \llbracket h \rrbracket\left[h^{-1}\right]_{3}^{\wedge} \\
& =\left\{\sum_{n=-\infty}^{\infty} c_{n} h^{n} \mid c_{n} \in \mathbb{Z}_{9}, \lim _{n \rightarrow-\infty} c_{n}=0\right\}
\end{aligned}
$$

Corollary (Z.)

The $K(1)$-local power operation $\psi_{F}^{3}: F^{0} \rightarrow F^{0}$ is given by

$$
\psi_{F}^{3}(h)=h^{3}-27 h^{2}+183 h-180+186 h^{-1}+1674 h^{-2}+\cdots
$$

Corollaries

$$
F=L_{K(1)} E
$$

$$
\begin{aligned}
F^{0} & \cong \mathbb{Z}_{9} \llbracket h \rrbracket\left[h^{-1}\right]_{3}^{\wedge} \\
& =\left\{\sum_{n=-\infty}^{\infty} c_{n} h^{n} \mid c_{n} \in \mathbb{Z}_{9}, \lim _{n \rightarrow-\infty} c_{n}=0\right\}
\end{aligned}
$$

Corollary (Z.)

The $K(1)$-local power operation $\psi_{F}^{3}: F^{0} \rightarrow F^{0}$ is given by

$$
\psi_{F}^{3}(h)=h^{3}-27 h^{2}+183 h-180+186 h^{-1}+1674 h^{-2}+\cdots
$$

Corollaries

$$
F=L_{K(1)} E
$$

$$
\begin{aligned}
F^{0} & \cong \mathbb{Z}_{9} \llbracket h \rrbracket\left[h^{-1}\right]_{3}^{\wedge} \\
& =\left\{\sum_{n=-\infty}^{\infty} c_{n} h^{n} \mid c_{n} \in \mathbb{Z}_{9}, \lim _{n \rightarrow-\infty} c_{n}=0\right\}
\end{aligned}
$$

Corollary (Z.)

The $K(1)$-local power operation $\psi_{F}^{3}: F^{0} \rightarrow F^{0}$ is given by

$$
\psi_{F}^{3}(h)=h^{3}-27 h^{2}+183 h-180+186 h^{-1}+1674 h^{-2}+\cdots
$$

Future directions

Question Can we get, for all p, a uniform presentation of the Dyer-Lashof algebra Γ for Morava E-theory at height 2?

A uniform presentation for Γ / p has been given at ht 2 (Rezk '12).
$\psi^{p}: E^{0} \rightarrow E^{0} B \Sigma_{p} / I \cong \mathbb{Z}_{p^{2}} \llbracket h \rrbracket\left[\alpha \rrbracket /(w(\alpha)) \cong \mathbb{Z}_{p^{2}} \llbracket \alpha, \alpha^{\prime} \rrbracket /\left(\alpha \alpha^{\prime}+p\right)\right.$
hard part: explicit structure of $E^{0} B \Sigma_{p} / I$ as a module over E^{0}

Future directions

Question Can we get, for all p, a uniform presentation of the Dyer-Lashof algebra Γ for Morava E-theory at height 2?

A uniform presentation for Γ / p has been given at ht 2 (Rezk '12).
$\psi^{p}: E^{0} \rightarrow E^{0} B \Sigma_{p} / I \cong \mathbb{Z}_{p^{2}} \llbracket h \rrbracket[\alpha] /(w(\alpha)) \cong \mathbb{Z}_{p^{2}} \llbracket \alpha, \alpha^{\prime} \rrbracket /\left(\alpha \alpha^{\prime}+p\right)$
hard part: explicit structure of $E^{0} B \Sigma_{p} / I$ as a module over E^{0}

Future directions

Question Can we get, for all p, a uniform presentation of the Dyer-Lashof algebra Γ for Morava E-theory at height 2?

A uniform presentation for Γ / p has been given at ht 2 (Rezk '12).
$\psi^{p}: E^{0} \rightarrow E^{0} B \Sigma_{p} / I \cong \mathbb{Z}_{p^{2}} \llbracket h \rrbracket[\alpha] /(w(\alpha)) \cong \mathbb{Z}_{p^{2}} \llbracket \alpha, \alpha^{\prime} \rrbracket /\left(\alpha \alpha^{\prime}+p\right)$
hard part: explicit structure of $E^{0} B \Sigma_{p} / I$ as a module over E^{0}

Future directions

Question Can we get, for all p, a uniform presentation of the Dyer-Lashof algebra Γ for Morava E-theory at height 2?

A uniform presentation for Γ / p has been given at ht 2 (Rezk '12).
$\psi^{p}: E^{0} \rightarrow E^{0} B \Sigma_{p} / I \cong \mathbb{Z}_{p^{2}} \llbracket h \rrbracket[\alpha] /(w(\alpha)) \cong \mathbb{Z}_{p^{2}} \llbracket \alpha, \alpha^{\prime} \rrbracket /\left(\alpha \alpha^{\prime}+p\right)$
hard part: explicit structure of $E^{0} B \Sigma_{p} / I$ as a module over E^{0}

Future directions

Question Can we get, for all p, a uniform presentation of the Dyer-Lashof algebra Γ for Morava E-theory at height 2?

A uniform presentation for Γ / p has been given at ht 2 (Rezk '12).
$\psi^{p}: E^{0} \rightarrow E^{0} B \Sigma_{p} / I \cong \mathbb{Z}_{p^{2}} \llbracket h \rrbracket[\alpha] /(w(\alpha)) \cong \mathbb{Z}_{p^{2}} \llbracket \alpha, \alpha^{\prime} \rrbracket /\left(\alpha \alpha^{\prime}+p\right)$
hard part: explicit structure of $E^{0} B \Sigma_{p} / I$ as a module over E^{0}

Future directions

Question Can we get, for all p, a uniform presentation of the Dyer-Lashof algebra Γ for Morava E-theory at height 2?

A uniform presentation for Γ / p has been given at ht 2 (Rezk '12).
$\psi^{p}: E^{0} \rightarrow E^{0} B \Sigma_{p} / I \cong \mathbb{Z}_{p^{2}} \llbracket h \rrbracket[\alpha] /(w(\alpha)) \cong \mathbb{Z}_{p^{2}} \llbracket \alpha, \alpha^{\prime} \rrbracket /\left(\alpha \alpha^{\prime}+p\right)$
hard part: explicit structure of $E^{0} B \Sigma_{p} / I$ as a module over E^{0}

Future directions

$$
\begin{aligned}
& \psi^{p}: E^{0} \rightarrow E^{0} B \Sigma_{p} / I \cong \mathbb{Z}_{p^{2}} \llbracket h \rrbracket[\alpha] /(w(\alpha)) \cong \mathbb{Z}_{p^{2}} \llbracket \alpha, \alpha^{\prime} \rrbracket /\left(\alpha \alpha^{\prime}+p\right) \\
& p=2 \text { (Rezk) } \\
& \alpha^{3}-a \alpha-2 \\
& \Gamma_{1}(3): y^{2}+a x y+y=x^{3} \\
& p=3 \text { (Z.) } \\
& \alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3 \quad \Gamma_{1}(4): y^{2}+a x y+a y=x^{3}+x^{2} \\
& p=5(\text { Z. }) \\
& \alpha^{6} \quad-5 a \alpha^{4}+40 \alpha^{3}-5 a^{2} \alpha^{2}+\left(a^{2}-19 a\right) \alpha-5 \quad \Gamma_{1}(3) \\
& \alpha^{6}-10 \alpha^{5}+35 \alpha^{4}-60 \alpha^{3}+55 \alpha^{2}-\left(a^{4}-16 a^{2}+26\right) \alpha+5 \Gamma_{1}(4)
\end{aligned}
$$

Future directions

$$
\begin{aligned}
& \psi^{p}: E^{0} \rightarrow E^{0} B \Sigma_{p} / I \cong \mathbb{Z}_{p^{2}} \llbracket h \rrbracket[\alpha] /(w(\alpha)) \cong \mathbb{Z}_{p^{2}} \llbracket \alpha, \alpha^{\prime} \rrbracket /\left(\alpha \alpha^{\prime}+p\right) \\
& p=2 \text { (Rezk) } \\
& \alpha^{3}-a \alpha-2 \\
& \text { (Mahowald-Rezk) } \\
& \Gamma_{1}(3): y^{2}+a x y+y=x^{3} \\
& p=3 \text { (Z.) } \\
& \alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3 \quad \Gamma_{1}(4): y^{2}+a x y+a y=x^{3}+x^{2} \\
& p=5(\text { Z. }) \\
& \alpha^{6} \quad-5 a \alpha^{4}+40 \alpha^{3}-5 a^{2} \alpha^{2}+\left(a^{2}-19 a\right) \alpha-5 \quad \Gamma_{1}(3) \\
& \alpha^{6}-10 \alpha^{5}+35 \alpha^{4}-60 \alpha^{3}+55 \alpha^{2}-\left(a^{4}-16 a^{2}+26\right) \alpha+5 \Gamma_{1}(4)
\end{aligned}
$$

Future directions

$$
\begin{aligned}
& \psi^{p}: E^{0} \rightarrow E^{0} B \Sigma_{p} / I \cong \mathbb{Z}_{p^{2}} \llbracket h \rrbracket[\alpha] /(w(\alpha)) \cong \mathbb{Z}_{p^{2}} \llbracket \alpha, \alpha^{\prime} \rrbracket /\left(\alpha \alpha^{\prime}+p\right) \\
& p=2 \text { (Rezk) } \\
& \alpha^{3}-a \alpha-2 \\
& \Gamma_{1}(3): y^{2}+a x y+y=x^{3} \\
& p=3 \text { (Z.) } \\
& \alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3 \\
& \Gamma_{1}(4): y^{2}+a x y+a y=x^{3}+x^{2} \\
& p=5 \text { (Z.) } \\
& \alpha^{6} \quad-5 a \alpha^{4}+40 \alpha^{3}-5 a^{2} \alpha^{2}+\left(a^{2}-19 a\right) \alpha-5 \quad \Gamma_{1}(3) \\
& \alpha^{6}-10 \alpha^{5}+35 \alpha^{4}-60 \alpha^{3}+55 \alpha^{2}-\left(a^{4}-16 a^{2}+26\right) \alpha+5 \Gamma_{1}(4)
\end{aligned}
$$

Future directions

$$
\begin{align*}
& \psi^{p}: E^{0} \rightarrow E^{0} B \Sigma_{p} / I \cong \mathbb{Z}_{p^{2}} \llbracket h \rrbracket\left[\alpha \rrbracket /(w(\alpha)) \cong \mathbb{Z}_{p^{2}} \llbracket \alpha, \alpha^{\prime} \rrbracket /\left(\alpha \alpha^{\prime}+p\right)\right. \\
& p=2 \text { (Rezk) } \\
& \alpha^{3}-a \alpha-2 \\
& p=3 \text { (Z.) } \\
& \alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3 \\
& \Gamma_{1}(4): y^{2}+a x y+a y=x^{3}+x^{2} \\
& p=5 \text { (Z.) } \\
& \alpha^{6} \quad-5 a \alpha^{4}+40 \alpha^{3}-5 a^{2} \alpha^{2}+\left(a^{2}-19 a\right) \alpha-5 \tag{1}\\
& \alpha^{6}-10 \alpha^{5}+35 \alpha^{4}-60 \alpha^{3}+55 \alpha^{2}-\left(a^{4}-16 a^{2}+26\right) \alpha+5 \Gamma_{1}(4)
\end{align*}
$$

Future directions

$$
\begin{align*}
& \psi^{p}: E^{0} \rightarrow E^{0} B \Sigma_{p} / I \cong \mathbb{Z}_{p^{2}} \llbracket h \rrbracket\left[\alpha \rrbracket /(w(\alpha)) \cong \mathbb{Z}_{p^{2}} \llbracket \alpha, \alpha^{\prime} \rrbracket /\left(\alpha \alpha^{\prime}+p\right)\right. \\
& p=2 \text { (Rezk) } \\
& \alpha^{3}-a \alpha-2 \\
& \Gamma_{1}(3): y^{2}+a x y+y=x^{3} \\
& p=3 \text { (Z.) } \\
& \alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3 \\
& \Gamma_{1}(4): y^{2}+a x y+a y=x^{3}+x^{2} \\
& p=5(\mathrm{Z} .) \\
& \alpha^{6} \quad-5 a \alpha^{4}+40 \alpha^{3}-5 a^{2} \alpha^{2}+\left(a^{2}-19 a\right) \alpha-5 \tag{1}\\
& \alpha^{6}-10 \alpha^{5}+35 \alpha^{4}-60 \alpha^{3}+55 \alpha^{2}-\left(a^{4}-16 a^{2}+26\right) \alpha+5 \quad \Gamma_{1}(4)
\end{align*}
$$

Future directions

$$
\begin{align*}
& \psi^{p}: E^{0} \rightarrow E^{0} B \Sigma_{p} / I \cong \mathbb{Z}_{p^{2}} \llbracket h \rrbracket\left[\alpha \rrbracket /(w(\alpha)) \cong \mathbb{Z}_{p^{2}} \llbracket \alpha, \alpha^{\prime} \rrbracket /\left(\alpha \alpha^{\prime}+p\right)\right. \\
& p=2 \text { (Rezk) } \\
& \alpha^{3}-a \alpha-2 \\
& \Gamma_{1}(3): y^{2}+a x y+y=x^{3} \\
& p=3 \text { (Z.) } \\
& \alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3 \\
& \Gamma_{1}(4): y^{2}+a x y+a y=x^{3}+x^{2} \\
& p=5 \text { (Z.) } \\
& \alpha^{6} \quad-5 a \alpha^{4}+40 \alpha^{3}-5 a^{2} \alpha^{2}+\left(a^{2}-19 a\right) \alpha-5 \tag{1}\\
& \alpha^{6}-10 \alpha^{5}+35 \alpha^{4}-60 \alpha^{3}+55 \alpha^{2}-\left(a^{4}-16 a^{2}+26\right) \alpha+5 \Gamma_{1}(4)
\end{align*}
$$

Future directions

$$
\begin{align*}
& \psi^{p}: E^{0} \rightarrow E^{0} B \Sigma_{p} / I \cong \mathbb{Z}_{p^{2}} \llbracket h \rrbracket\left[\alpha \rrbracket /(w(\alpha)) \cong \mathbb{Z}_{p^{2}} \llbracket \alpha, \alpha^{\prime} \rrbracket /\left(\alpha \alpha^{\prime}+p\right)\right. \\
& p=2 \text { (Rezk) } \\
& \alpha^{3}-a \alpha-2 \\
& \Gamma_{1}(3): y^{2}+a x y+y=x^{3} \\
& p=3 \text { (Z.) } \\
& \alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3 \\
& \Gamma_{1}(4): y^{2}+a x y+a y=x^{3}+x^{2} \\
& p=5 \text { (Z.) } \\
& \alpha^{6} \quad-5 a \alpha^{4}+40 \alpha^{3}-5 a^{2} \alpha^{2}+\left(a^{2}-19 a\right) \alpha-5 \tag{1}\\
& \alpha^{6}-10 \alpha^{5}+35 \alpha^{4}-60 \alpha^{3}+55 \alpha^{2}-\left(a^{4}-16 a^{2}+26\right) \alpha+5 \quad \Gamma_{1}(4)
\end{align*}
$$

Future directions

$$
\begin{align*}
& \psi^{p}: E^{0} \rightarrow E^{0} B \Sigma_{p} / I \cong \mathbb{Z}_{p^{2}} \llbracket h \rrbracket\left[\alpha \rrbracket /(w(\alpha)) \cong \mathbb{Z}_{p^{2}} \llbracket \alpha, \alpha^{\prime} \rrbracket /\left(\alpha \alpha^{\prime}+p\right)\right. \\
& p=2 \text { (Rezk) } \\
& \alpha^{3}-a \alpha-2 \\
& p=3 \text { (Z.) } \\
& \alpha^{4}-6 \alpha^{2}+\left(a^{2}-8\right) \alpha-3 \\
& \Gamma_{1}(4): y^{2}+a x y+a y=x^{3}+x^{2} \\
& p=5 \text { (Z.) } \\
& \alpha^{6} \quad-5 a \alpha^{4}+40 \alpha^{3}-5 a^{2} \alpha^{2}+\left(a^{2}-19 a\right) \alpha-5 \tag{1}\\
& \alpha^{6}-10 \alpha^{5}+35 \alpha^{4}-60 \alpha^{3}+55 \alpha^{2}-\left(a^{4}-16 a^{2}+26\right) \alpha+5 \Gamma_{1}(4)
\end{align*}
$$

Thank you.

