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Abstract

Quillen recognized the higher algebraic 𝐾-groups of a
ring 𝑅 as homotopy groups of a certain topological
space, 𝐵𝐺𝐿(𝑅)+. We review some of the basic definitions
and computations via categorical algebra. We then
describe how a 2-categorical extension of this theory
leads to a new model for 𝐾3(𝑅), together with more
general applications. We will give a mild sampling of key
technical details and close with some of the problems
we’re currently working on. The work we present is joint
with Gurski-Osorno, Fontes-Gurski and Parab.



Outline

▶ Algebraic 𝐾-groups of a ring
▶ Low-dimensional cases
▶ Quillen’s higher 𝐾-groups
▶ Application for 𝐾2

▶ 2-categorical analogue
▶ Examples of symmetric monoidal 2-categories
▶ Generalizations of Quillen’s constructions
▶ Application for 𝐾3



Algebraic 𝐾-groups of a ring: 𝐾0(𝑅)

Ring 𝑅
Proj𝑓.𝑔.(𝑅) = finitely-generated projective 𝑅-modules

(symmetric monoidal category under ⊕.)

Definition
𝐾0(𝑅) = 𝐺𝑟(Proj𝑓.𝑔.(𝑅)/ ≅).

(𝐺𝑟 = group-completion; known as Grothendieck construction)

Example for field 𝐹 , 𝐾0(𝐹) = ℤ.
Example Application det∶ 𝐾0(𝑅) → Pic(𝑅)
is a surjection.



Algebraic 𝐾-groups of a ring: 𝐾0(𝑅)

Generalize to Grothendieck group of other symmetric
monoidal categories 𝑆:
Definition

𝐾0(𝑆) = 𝐺𝑟(𝑆/ ≅).

Examples:
▶ Proj𝑓.𝑔.(𝑅)
▶ vector bundles on topological spaces
▶ representations of finite groups



Algebraic 𝐾-groups of a ring: 𝐾1(𝑅)

Let 𝐺𝐿(𝑅) be the infinite general linear group

𝐺𝐿(𝑅) = colim( ⋯ ↪ 𝐺𝐿𝑛(𝑅) ↪ 𝐺𝐿𝑛+1(𝑅) ↪ ⋯ ).

(union of groups)

Definition
𝐾1(𝑅) = 𝐺𝐿(𝑅)ab = 𝐺𝐿(𝑅) / [𝐺𝐿(𝑅), 𝐺𝐿(𝑅)].

Equivalently,
𝐾1(𝑅) = 𝐻1(𝐺𝐿(𝑅)).



Algebraic 𝐾-groups of a ring: 𝐾1(𝑅)

Theorem (Localization exact sequence)
Let 𝑆 be a multiplicatively closed set of central elements
in 𝑅. Then there is an exact sequence

𝐾1(𝑅) → 𝐾1(𝑆−1𝑅) → 𝐾0(Ft𝑆(𝑅)) → 𝐾0(𝑅) → 𝐾0(𝑆−1𝑅).
(Ft𝑆(𝑅) = 𝑆-torsion 𝑅-modules with finite-length projective resolutions)

Theorem (Fundamental Theorem)
There is an exact sequence

0 → 𝐾1(𝑅) → 𝐾1(𝑅[𝑡]) ⊕ 𝐾1(𝑅[𝑡−1]) → 𝐾1(𝑅[𝑡, 𝑡−1]) → 𝐾0(𝑅) → 0.



Algebraic 𝐾-groups of a ring: 𝐾2(𝑅)

Lemma (Whitehead)

[𝐺𝐿(𝑅), 𝐺𝐿(𝑅)] = 𝐸(𝑅) = colimn𝐸𝑛(𝑅)
where 𝐸𝑛(𝑅) is the elementary group generated by
elementary 𝑛 × 𝑛 matrices.

(ones on diagonal; single off-diagonal entry)

Equivalent definitions
𝐾1(𝑅) = 𝐺𝐿(𝑅)ab = 𝐺𝐿(𝑅)/𝐸(𝑅) = 𝐻1(𝐺𝐿(𝑅))



Algebraic 𝐾-groups of a ring: 𝐾2(𝑅)
The Steinberg group, 𝑆𝑡(𝑅) is generated by formal
symbols 𝑥𝑖𝑗(𝑟) for 𝑟 ∈ 𝑅, subject to elementary relations.

(products and commutators of elementary matrices)

Note: 𝐸(𝑅) generally has more relations than 𝑆𝑡(𝑅).
Definition

𝐾2(𝑅) = ker( 𝑆𝑡(𝑅) → 𝐸(𝑅) ).

Theorem (Steinberg)
𝐾2(𝑅) is the center of 𝑆𝑡(𝑅). In particular, 𝐾2(𝑅) is abelian.

Theorem (Bass)
𝐾2(𝑅) ≅ 𝐻2(𝐸(𝑅)).



Properties of low-dimensional 𝐾-groups

Looking at the definitions, it may be unclear that the
groups 𝐾𝑖(𝑅) are part of any reasonable sequence. Here
are some clues.

▶ Localization exact sequence
▶ Fundamental Theorems for 𝑅[𝑡, 𝑡−1]
▶ 𝐾1(𝑅) and 𝐾2(𝑅) are modules over 𝐾0(𝑅)
▶ Product 𝐾1(𝑅) ⊗ 𝐾1(𝑅) → 𝐾2(𝑅).



Quillen’s higher 𝐾-groups
Definition

𝐾𝑛(𝑅) = 𝜋𝑛( 𝐵𝐺𝐿(𝑅)+), 𝑛 > 0

Explanation (Part 1) 𝐵G is the classifying space of a
group G. (we will take G = 𝐺𝐿(𝑅))

𝐵G is the base of a principal G-bundle
G→ 𝐸G→ 𝐵G

▶ 𝐸G contractible and has free G-action
▶ therefore 𝐵G ≃ 𝐾(G, 1), an Eilenberg-Mac Lane space

Example: 𝐵ℤ = 𝑆1
ℤ → ℝ → 𝑆1



Quillen’s higher 𝐾-groups
Definition

𝐾𝑛(𝑅) = 𝜋𝑛( 𝐵𝐺𝐿(𝑅)+), 𝑛 > 0

Explanation (Part 2) The plus construction 𝑋+ on a
topological space 𝑋 has two properties:
▶ 𝜋1(𝑋+) = 𝜋1(𝑋)ab ≅ 𝐻1(𝑋)▶ a map 𝑋 → 𝑋+ inducing a homology isomorphism

Thus we certainly have
𝜋1(𝐵𝐺𝐿(𝑅)+) ≅ 𝐺𝐿(𝑅)ab = 𝐾1(𝑅).



Quillen’s higher 𝐾-groups
Definition

𝐾𝑛(𝑅) = 𝜋𝑛( 𝐵𝐺𝐿(𝑅)+), 𝑛 > 0

Explanation (Part 3) Why is this definition such a good
one? (partial answer)
▶ Extends localization exact sequence and
fundamental theorem.

▶ Explains graded ring structure on 𝐾𝑛(𝑅).▶ Explains connection between algebraic 𝐾-groups
and homotopy theory.



Quillen’s higher 𝐾-groups: Second version

Let Q = Q(Proj𝑓.𝑔.(𝑅)) be the following category.
▶ Objects are those of Proj𝑓.𝑔.(𝑅)
▶ Morphisms 𝑋 → 𝑌 are injection/surjection spans

𝑌𝑋
𝑆

▶ Composition is via pullback

𝑍𝑌𝑋
𝑇𝑆

𝑃



Quillen’s higher 𝐾-groups: Second version
Definition (Alternate)

𝐾𝑛(𝑅) = 𝜋𝑛+1(𝐵Q) ≅ 𝜋𝑛(Ω𝐵Q) 𝑛 ≥ 0

Explanation
▶ 𝐵Q is classifying space of a category
▶ Ω𝑋 = Map(𝑆1, 𝑋) for any 𝑋

(𝜋𝑛(Ω𝑋) ≅ 𝜋𝑛+1(𝑋) for 𝑛 ≥ 0)▶ Ω𝐵Q is a topological group-completion
▶ group-completion 𝐺𝑟 on 𝜋0▶ isomorphism on homology when 𝜋0 inverted

The Q-construction is purely algebraic; doesn’t rely on
plus construction. Iterated Q-construction
(Waldhausen’s 𝑆•) has further structure.



Quillen’s higher 𝐾-groups: + = Q
Theorem (Quillen)

𝐾0(𝑅) × 𝐵𝐺𝐿(𝑅)+ ≃ Ω𝐵Q.

This gives two completely different ways to approach
algebraic 𝐾-theory. Each version has both conceptual
and calculational advantages.

Proof sketch: + = 𝑆−1𝑆 = Q
Let 𝑆 = Projiso𝑓.𝑔.(𝑅). Define localization of categories, 𝑆−1𝑆,
and prove

𝐾0(𝑅) × 𝐵𝐺𝐿(𝑅)+ ≃ 𝐵𝑆−1𝑆 ≃ Ω𝐵Q.
(We will say more about 𝑆−1𝑆, but not Q.)



𝑆−1𝑆
Let 𝑆 = (𝑆, ⊗) be a symmetric monoidal category with
▶ every morphism invertible, (𝑆 is a groupoid)
▶ faithful translations. (𝑋 ⊗ 𝐴 ≅ 𝑌 ⊗ 𝐴 iff 𝑋 ≅ 𝑌)

Define new category 𝑆−1𝑆 with formal inverses to ⊗.
▶ Objects (𝑋1, 𝑋2) pairs of objects from 𝑆.

(formal fractions)

▶ Morphisms (𝑋1, 𝑋2) → (𝑌1, 𝑌2) equivalence classes of
triples (𝐴, 𝑓1, 𝑓2): (cancellation morphisms)

(𝑓1, 𝑓2)∶ (𝑋1 ⊗ 𝐴, 𝑋2 ⊗ 𝐴) → (𝑌1, 𝑌2).

▶ Equivalence: (morphisms of cancellation morphisms)
(𝐴, 𝑓1, 𝑓2) ∼ (𝐴′, 𝑓′1, 𝑓′2) if
∃𝑡∶ 𝐴 → 𝐴′ such that

(𝑋1 ⊗ 𝐴, 𝑋2 ⊗ 𝐴) (𝑋1 ⊗ 𝐴′, 𝑋2 ⊗ 𝐴′)

(𝑌1, 𝑌2)

(1 ⊗ 𝑡, 1 ⊗ 𝑡)



𝑆−1𝑆
Examples
▶ 𝑆 = Projiso𝑓.𝑔.(𝑅) with ⊕
▶ 𝑆 =∐

𝑛
Σ𝑛 ≃ FinSet with (block) sum / disjoint union.

Theorem (Quillen, Grayson)
The inclusion 𝑆 → 𝑆−1𝑆 induces a topological
group-completion. That is:

𝐵𝑆 → 𝐵𝑆−1𝑆,
▶ induces group-completion on 𝜋0;
▶ is a homology localization:

𝐻∗(𝐵𝑆)⟶ 𝐻∗(𝐵𝑆−1𝑆) ≅ 𝐻∗(𝐵𝑆)[𝜋0(𝐵𝑆)−1].



𝑆−1𝑆

Generalization of 𝐺𝐿(𝑅): Given a sequence of objects and
inclusions

⋯ ↪ Aut𝑆(𝐴𝑛) ↪ Aut𝑆(𝐴𝑛+1) ↪ ⋯ ,

we have a group Aut(𝑆) = colim𝑛Aut𝑆(𝐴𝑛).
(This is deceptively simple.)

If (as in our examples), the sequence is cofinal in 𝑆, one
proves

𝐵𝑆 → 𝐾0(𝑆) × 𝐵Aut(𝑆)
is an isomorphism on localized homology
𝐻∗( )[𝜋0(𝐵𝑆)−1].
(This is another topological group-completion.)



𝑆−1𝑆
Therefore the solid arrows are isomorphisms on
𝐻∗( )[𝜋0(𝐵𝑆)−1]

𝐵𝑆

𝐵𝑆−1𝑆

𝐾0(𝑆) × 𝐵Aut(𝑆)

𝐾0(𝑆) × 𝐵Aut(𝑆)+

By universal property we have the dashed arrow
inducing a homology isomorphism. Therefore a
homotopy equivalence (of simple spaces)

𝐵𝑆−1𝑆 ≃ 𝐾0(𝑆) × 𝐵Aut(𝑆)+.
This is half of the + = Q theorem.



Example: 𝐾2(𝑅) ≅ 𝐻2(𝐸(𝑅))
We have two homotopy fiber sequences:

𝐵𝐸 𝐵Aut(𝑆) 𝑃1 𝐵𝑆−1𝑆0

𝐹 𝐵Aut(𝑆)+ 𝑃1 𝐵𝑆−1𝑆0
▶ 𝐵𝑆−1𝑆0 denotes basepoint component▶ 𝑃1 denotes first Postnikov truncation▶ 𝐸 = [Aut(𝑆),Aut(𝑆)] (Note top is homotopy fiber sequence)
▶ 𝐹 is defined to be homotopy fiber on the bottom row

𝜋1(𝐹) = 0; 𝜋2(𝐹) ≅ 𝜋2( 𝐵Aut(𝑆)+)▶ Vertical maps are homology isomorphisms (by SSS)

𝐻2(𝐸) ≅ 𝐻2(𝐵𝐸) ≅ 𝐻2(𝐹) ≅ 𝜋2(𝐹) ≅ 𝜋2( 𝐵Aut(𝑆)+) = 𝐾2(𝑆)



Recap of background
▶ Algebraic 𝐾 groups of a ring connect geometric and
number-theoretic information.
▶ 𝐾0(𝑅) = 𝐺𝑟(Projf.g.(𝑅))
▶ 𝐾1(𝑅) = 𝐻1(𝐺𝐿(𝑅)) = 𝐺𝐿(𝑅)ab = 𝐺𝐿(𝑅)/𝐸(𝑅)
▶ 𝐾2(𝑅) = 𝐻2(𝐸(𝑅))
▶ 𝐾𝑛(𝑅) = 𝜋𝑛( 𝐵𝐺𝐿(𝑅)+).

▶ Quillen’s “+ = 𝑆−1𝑆 = Q”
▶ Different but equivalent defintions of higher 𝐾
groups give different calculational and conceptual
information.

▶ Bridge, 𝑆−1𝑆, is a categorical construction whose
classifying space realizes both + and Q
constructions.

▶ Both homotopical and algebraic tools inform
computation of 𝐾∗(𝑅).



Motivations for higher-categorical algebra
Who could ask for anything more?!
▶ Relative 𝐾-theory: Given a map of rings 𝑓 ∶ 𝑅 → 𝑇 ,

𝐾𝑛(𝑓) = 𝜋𝑛hofib( 𝐵𝐺𝐿(𝑅)+ → 𝐵𝐺𝐿(𝑇)+ )
▶ Hermitian 𝐾-theory: If 𝑅 is a ring with involution
(e.g. complex conjugation), Hermitian 𝐾-theory is
defined via homotopy fixed points of 𝐵𝐺𝐿(𝑅)+.
▶ Relates to topology of manifolds (e.g.
diffeomorphism classes)

▶ Relates to motivic homotopy theory

▶ Use Postnikov 𝑃2 to make an algebraic calculation
of 𝐾3(𝑅)? (Recall 𝐾3(ℤ) = ℤ/48 ↠ 𝜋𝑠3 = ℤ/24.)

Are there categories whose classifying spaces
compute these?!



Symmetric monoidal algebra in dimension 2
Symmetric monoidal 2-categories are like symmetric
monoidal categories with another level of structure.

(product on objects, morphisms, and 2-morphisms)
(we mean a 2-category that is symmetric monoidal as a bicategory)

Example 𝐵𝑖𝑚𝑜𝑑 has objects which are rings;
𝐵𝑖𝑚𝑜𝑑(𝑅, 𝑇) is the category of (𝑅, 𝑇)-bimodules.

▶ Tensor product provides “composition” of
𝑅 𝑀−−→ 𝑇 𝑁−−→ 𝑉 .

▶ Tensor product of rings provides symmetric
monoidal structure.

Example 𝐶𝑎𝑡 has objects which are categories;
𝐶𝑎𝑡(𝐶, 𝐷) is the category of functors and natural
transformations.

▶ Cartesian product of categories provides a
symmetric monoidal structure.



Symmetric monoidal algebra in dimension 2

Better examples:
▶ relative constructions
▶ fixed point constructions
▶ telescope (colimit) constructions



𝑆−1𝑆 for 2-categories
Let 𝑆 be a symmetric monoidal 2-category and suppose:
▶ all morphisms and 2-morphsisms are invertible

(𝑆 is a 2-groupoid)
▶ 𝑆 has faithful translations

Theorem (Gurski-J.-Osorno)
There is a symmetric monoidal 2-category 𝑆−1𝑆 with

𝑆⟶ 𝑆−1𝑆

inducing a topological group-completion.

▶ group-completion on 𝜋0
▶ isomorphism on localized homology



𝑆−1𝑆 for 2-categories

Sketch proof
▶ 𝑆−1𝑆: same idea as 1-categorical case, but include
2-morphisms instead of equivalence relation on
morphisms.

▶ Use 2-categorical comma construction to analyze
fibers. (This took a while to figure out.)

▶ Homology spectral sequence collapses after
inverting 𝜋0(𝐵𝑆). (Just like 1-categorical case.)



+ = 𝑆−1𝑆 for 2-categories
Given a sequence of objects and faithful functors

⋯ ↪ Aut𝑆(𝐴𝑛) ↪ Aut𝑆(𝐴𝑛+1) ↪ ⋯ ,
we have a categorical group Aut(𝑆) = colim𝑛Aut𝑆(𝐴𝑛).

(monoidal category with objects and morphisms are invertible)

If (as in examples), the sequence is cofinal, we have:

Theorem (80% done; Fontes-Gurski-J.)
𝐵𝑆−1𝑆 ≃ 𝐾0(𝑆) × 𝐵Aut(𝑆)+

Key step Compare colimit of 1-object 2-categories, v.s.
1-object 2-category of colimit (Σ means 1-object “suspension”)

colim𝑛ΣAut𝑆(𝐴𝑛) v.s. Σcolim𝑛Aut𝑆(𝐴𝑛)
(1-categorical case completely straightforward)



Application to 𝐾3
Theorem (In progress; J.-Parab)
There is a commutator subcategory 𝐸 such that the
following is a homotopy fiber sequence.

𝐵𝐸 𝐵Aut(𝑆) 𝑃2 𝐵𝑆−1𝑆0
Corollary

𝐾3(𝑅) ≅ 𝐻3(𝐵𝐸) (same method as 𝐾2 calculation using 𝑃1)

Conjecture (Fontes)
The commutator category 𝐸 is a categorification of the
Steinberg group.
▶ 𝑆𝑡(𝑅) is the universal central extension of the
commutator subgroup of 𝐺𝐿(𝑅).

▶ Gersten (1973) proved 𝐾3(𝑅) ≅ 𝐻3(𝑆𝑡(𝑅)) using very
different methods.



Conclusion
Algebraic 𝐾-theory for 2-categories
joint with
E. Fontes, N. Gurski, A.M. Osorno, and A. Parab
▶ Background on algebraic 𝐾-theory

▶ 𝐾0, 𝐾1, 𝐾2▶ 𝐵𝐺𝐿(𝑅)+
▶ + = 𝑆−1𝑆 = Q

▶ Sketch of 2-categorical 𝐾-theory
▶ Motivations: 𝐾3, Hermitian, relative▶ Current issues: colimits of monoidal 1-categories
▶ Future plans: understanding the Steinberg group

Thank You!
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