Algebraic K-theory for 2-categories

Niles Johnson joint work with

E. Fontes, N. Gurski, A.M. Osorno, and A. Parab

Department of Mathematics The Ohio State University, Newark

https://nilesjohnson.net

March 2022

Abstract

Quillen recognized the higher algebraic K-groups of a ring R as homotopy groups of a certain topological space, $BGL(R)^{+}$. We review some of the basic definitions and computations via categorical algebra. We then describe how a 2-categorical extension of this theory leads to a new model for $K_3(R)$, together with more general applications. We will give a mild sampling of key technical details and close with some of the problems we're currently working on. The work we present is joint with Gurski-Osorno. Fontes-Gurski and Parab.

Outline

- Algebraic K-groups of a ring
 - ► Low-dimensional cases
 - Quillen's higher K-groups
 - Application for K₂
- 2-categorical analogue
 - Examples of symmetric monoidal 2-categories
 - Generalizations of Quillen's constructions
 - ► Application for K₃

Algebraic K-groups of a ring: $K_0(R)$

Ring RProj_{f.g.}(R) = finitely-generated projective R-modules (symmetric monoidal category under \oplus .)

Definition

$$K_0(R) = Gr(\text{Proj}_{f,a}(R)/\cong).$$

(Gr = group-completion; known as Grothendieck construction)

Example for field F, $K_0(F) = \mathbb{Z}$. Example Application det: $K_0(R) \to Pic(R)$ is a surjection.

Algebraic K-groups of a ring: $K_0(R)$

Generalize to Grothendieck group of other symmetric monoidal categories S:

Definition

$$K_0(S) = Gr(S/\cong).$$

Examples:

- $ightharpoonup Proj_{f,a}(R)$
- vector bundles on topological spaces
- representations of finite groups

Algebraic K-groups of a ring: $K_1(R)$

Let GL(R) be the infinite general linear group

$$GL(R) = \operatorname{colim} \bigl(\cdots \hookrightarrow GL_n(R) \hookrightarrow GL_{n+1}(R) \hookrightarrow \cdots \bigr).$$

(union of groups)

Definition

$$K_1(R) = GL(R)^{ab} = GL(R) / [GL(R), GL(R)].$$

Equivalently,

$$K_1(R) = H_1(GL(R)).$$

Algebraic K-groups of a ring: $K_1(R)$

Theorem (Localization exact sequence)

Let S be a multiplicatively closed set of central elements in R. Then there is an exact sequence

$$K_1(R) \to K_1(S^{-1}R) \to K_0(\mathrm{Ft}_S(R)) \to K_0(R) \to K_0(S^{-1}R).$$

 $(Ft_s(R) = S$ -torsion R-modules with finite-length projective resolutions)

Theorem (Fundamental Theorem)

There is an exact sequence

$$0 \to K_1(R) \to K_1(R[t]) \oplus K_1(R[t^{-1}]) \to K_1(R[t,t^{-1}]) \to K_0(R) \to 0.$$

Algebraic K-groups of a ring: $K_2(R)$

Lemma (Whitehead)

$$[GL(R), GL(R)] = E(R) = \operatorname{colim}_{n} E_{n}(R)$$

where $E_n(R)$ is the elementary group generated by elementary $n \times n$ matrices.

(ones on diagonal; single off-diagonal entry)

Equivalent definitions

$$K_1(R) = GL(R)^{ab} = GL(R)/E(R) = H^1(GL(R))$$

Algebraic K-groups of a ring: $K_2(R)$

The Steinberg group, St(R) is generated by formal symbols $x_{ii}(r)$ for $r \in R$, subject to elementary relations.

(products and commutators of elementary matrices)

Note: E(R) generally has more relations than St(R).

Definition

$$K_2(R) = \ker(St(R) \to E(R)).$$

Theorem (Steinberg)

 $K_2(R)$ is the center of St(R). In particular, $K_2(R)$ is abelian.

Theorem (Bass)

$$K_2(R) \cong H_2(E(R)).$$

Properties of low-dimensional *K*-groups

Looking at the definitions, it may be unclear that the groups $K_i(R)$ are part of any reasonable sequence. Here are some clues.

- Localization exact sequence
- Fundamental Theorems for $R[t, t^{-1}]$
- $ightharpoonup K_1(R)$ and $K_2(R)$ are modules over $K_0(R)$
- ▶ Product $K_1(R) \otimes K_1(R) \rightarrow K_2(R)$.

Quillen's higher K-groups

Definition

$$K_n(R) = \pi_n(BGL(R)^+), \quad n > 0$$

Explanation (Part 1) BG is the classifying space of a group G. (we will take G = GL(R))

BG is the base of a principal G-bundle

$$G \rightarrow EG \rightarrow BG$$

- EG contractible and has free G-action
- ▶ therefore $BG \simeq K(G, 1)$, an Eilenberg-Mac Lane space

Example:
$$B\mathbb{Z} = S^1$$

$$\mathbb{Z} \to \mathbb{R} \to S^1$$

Quillen's higher K-groups

Definition

$$K_n(R) = \pi_n(BGL(R)^+), \quad n > 0$$

Explanation (Part 2) The plus construction X^+ on a topological space X has two properties:

- \blacksquare $\pi_1(X^+) = \pi_1(X)^{ab} \cong H_1(X)$
- ▶ a map $X \to X^+$ inducing a homology isomorphism

Thus we certainly have

$$\pi_1(BGL(R)^+) \cong GL(R)^{ab} = K_1(R).$$

Quillen's higher K-groups

Definition

$$K_n(R) = \pi_n(BGL(R)^+), \quad n > 0$$

Explanation (Part 3) Why is this definition such a good one? (partial answer)

- Extends localization exact sequence and fundamental theorem.
- Explains graded ring structure on $K_n(R)$.
- Explains connection between algebraic K-groups and homotopy theory.

Quillen's higher K-groups: Second version

Let $Q = Q(Proj_{f.a.}(R))$ be the following category.

- ▶ Objects are those of $Proj_{f.q.}(R)$
- ► Morphisms $X \rightarrow Y$ are injection/surjection spans

$$X \stackrel{S}{\sim} Y$$

Composition is via pullback

Quillen's higher K-groups: Second version

Definition (Alternate)

$$K_n(R) = \pi_{n+1}(BQ) \cong \pi_n(\Omega BQ) \qquad n \ge 0$$

Explanation

- BQ is classifying space of a category
- $\Omega X = \operatorname{Map}(S^{1}, X) \text{ for any } X$ $(\pi_{n}(\Omega X) \cong \pi_{n+1}(X) \text{ for } n \geq 0)$
- ightharpoonup ΩBQ is a topological group-completion
 - group-completion *Gr* on π_0
 - ightharpoonup isomorphism on homology when π_0 inverted

The Q-construction is purely algebraic; doesn't rely on plus construction. Iterated Q-construction (Waldhausen's S.) has further structure.

Quillen's higher K-groups: + = Q

Theorem (Quillen)

$$K_0(R) \times BGL(R)^+ \simeq \Omega BQ.$$

This gives two completely different ways to approach algebraic *K*-theory. Each version has both conceptual and calculational advantages.

Proof sketch: $+ = S^{-1}S = Q$

Let $S = \text{Proj}_{f.g.}^{\text{iso}}(R)$. Define localization of categories, $S^{-1}S$, and prove

$$K_0(R) \times BGL(R)^+ \simeq BS^{-1}S \simeq \Omega BQ.$$

(We will say more about $S^{-1}S$, but not Q.)

$S^{-1}S$

Let $S = (S, \otimes)$ be a symmetric monoidal category with

- every morphism invertible, (S is a groupoid)
- ► faithful translations. $(X \otimes A \cong Y \otimes A \text{ iff } X \cong Y)$

Define new category $S^{-1}S$ with formal inverses to \otimes .

- ► Objects (X₁, X₂) pairs of objects from S. (formal fractions)
- ► Morphisms $(X_1, X_2) \rightarrow (Y_1, Y_2)$ equivalence classes of triples (A, f_1, f_2) : (cancellation morphisms)

$$(f_1, f_2): (X_1 \otimes A, X_2 \otimes A) \to (Y_1, Y_2).$$

Equivalence: (morphisms of cancellation morphisms) $(A, f_1, f_2) \sim (A', f'_1, f'_2)$ if $(X_1 \otimes A, X_2 \otimes A) \xrightarrow{(1 \otimes I, 1 \otimes I)} (X_1 \otimes A', X_2 \otimes A')$ $\exists t : A \rightarrow A'$ such that

S⁻¹S

Examples

- \triangleright S = Proj^{iso}_{f.g.}(R) with \oplus
- ► $S = \coprod_{n} \Sigma_{n} \simeq \text{FinSet with (block) sum / disjoint union.}$

Theorem (Quillen, Grayson)

The inclusion $S \to S^{-1}S$ induces a topological group-completion. That is:

$$BS \rightarrow BS^{-1}S$$
,

- ▶ induces group-completion on π_0 ;
- ▶ is a homology localization:

$$H_{*}(BS) \longrightarrow H_{*}(BS^{-1}S) \cong H_{*}(BS)[\pi_{0}(BS)^{-1}].$$

S⁻¹S

Generalization of GL(R): Given a sequence of objects and inclusions

$$\cdots \hookrightarrow \operatorname{Aut}_{S}(A_{n}) \hookrightarrow \operatorname{Aut}_{S}(A_{n+1}) \hookrightarrow \cdots$$

we have a group $Aut(S) = colim_n Aut_S(A_n)$. (This is deceptively simple.)

If (as in our examples), the sequence is cofinal in *S*, one proves

$$BS \to K_0(S) \times BAut(S)$$

is an isomorphism on localized homology $H_*(__)[\pi_0(BS)^{-1}]$. (This is another topological group-completion.)

$S^{-1}S$

Therefore the solid arrows are isomorphisms on $H_*(_)[\pi_0(BS)^{-1}]$

$$BS \longrightarrow K_0(S) \times BAut(S)$$

$$\downarrow \qquad \qquad \downarrow$$

$$BS^{-1}S \longrightarrow K_0(S) \times BAut(S)^+$$

By universal property we have the dashed arrow inducing a homology isomorphism. Therefore a homotopy equivalence (of simple spaces)

$$BS^{-1}S \simeq K_0(S) \times BAut(S)^+$$
.

This is half of the + = Q theorem.

Example: $K_2(R) \cong H_2(E(R))$

We have two homotopy fiber sequences:

$$BE \longrightarrow BAut(S) \longrightarrow P_1 BS^{-1}S_0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$F \longrightarrow BAut(S)^+ \longrightarrow P_1 BS^{-1}S_0$$

- \triangleright BS⁻¹S₀ denotes basepoint component
- P₁ denotes first Postnikov truncation
- ightharpoonup E = [Aut(S), Aut(S)] (Note top is homotopy fiber sequence)
- F is defined to be homotopy fiber on the bottom row $\pi_1(F) = 0$; $\pi_2(F) \cong \pi_2(BAut(S)^+)$
- Vertical maps are homology isomorphisms (by SSS)

$$H_2(E) \cong H_2(BE) \cong H_2(F) \cong \pi_2(F) \cong \pi_2(BAut(S)^+) = K_2(S)$$

Recap of background

- ► Algebraic *K* groups of a ring connect geometric and number-theoretic information.
 - $ightharpoonup K_0(R) = Gr(Proj_{f.g.}(R))$
 - $ightharpoonup K_1(R) = H_1(GL(R)) = GL(R)^{ab} = GL(R)/E(R)$
 - $ightharpoonup K_2(R) = H_2(E(R))$
 - $K_n(R) = \pi_n(BGL(R)^+).$
- Quillen's "+ = $S^{-1}S = Q$ "
 - Different but equivalent defintions of higher K groups give different calculational and conceptual information.
 - ► Bridge, S⁻¹S, is a categorical construction whose classifying space realizes both + and Q constructions.
 - ▶ Both homotopical and algebraic tools inform computation of $K_{\downarrow}(R)$.

Motivations for higher-categorical algebra

Who could ask for anything more?!

▶ Relative K-theory: Given a map of rings $f: R \to T$,

$$K_n(f) = \pi_n \text{hofib}(BGL(R)^+ \rightarrow BGL(T)^+)$$

- Hermitian K-theory: If R is a ring with involution (e.g. complex conjugation), Hermitian K-theory is defined via homotopy fixed points of BGL(R)*.
 - Relates to topology of manifolds (e.g. diffeomorphism classes)
 - Relates to motivic homotopy theory
- ► Use Postnikov P_2 to make an algebraic calculation of $K_3(R)$? (Recall $K_3(\mathbb{Z}) = \mathbb{Z}/48 \twoheadrightarrow \pi_3^s = \mathbb{Z}/24$.)

Are there categories whose classifying spaces compute these?!

Symmetric monoidal algebra in dimension 2

Symmetric monoidal 2-categories are like symmetric monoidal categories with another level of structure.

(product on objects, morphisms, and 2-morphisms)
(we mean a 2-category that is symmetric monoidal as a *bicategory*)

Example Bimod has objects which are rings; Bimod(R,T) is the category of (R,T)-bimodules.

- ► Tensor product provides "composition" of $R \xrightarrow{M} T \xrightarrow{N} V$.
- Tensor product of rings provides symmetric monoidal structure.

Example Cat has objects which are categories; Cat(C, D) is the category of functors and natural transformations.

 Cartesian product of categories provides a symmetric monoidal structure.

Symmetric monoidal algebra in dimension 2

Better examples:

- relative constructions
- fixed point constructions
- telescope (colimit) constructions

S⁻¹S for 2-categories

Let S be a symmetric monoidal 2-category and suppose:

- ► all morphisms and 2-morphsisms are invertible (S is a 2-groupoid)
- ► S has faithful translations

Theorem (Gurski-J.-Osorno)

There is a symmetric monoidal 2-category S⁻¹S with

$$S \longrightarrow S^{-1}S$$

inducing a topological group-completion.

- group-completion on π_0
- ▶ isomorphism on localized homology

S⁻¹S for 2-categories

Sketch proof

- ► S⁻¹S: same idea as 1-categorical case, but include 2-morphisms instead of equivalence relation on morphisms.
- Use 2-categorical comma construction to analyze fibers. (This took a while to figure out.)
- ► Homology spectral sequence collapses after inverting $\pi_0(BS)$. (Just like 1-categorical case.)

$+ = S^{-1}S$ for 2-categories

Given a sequence of objects and faithful functors

$$\cdots \hookrightarrow \operatorname{Aut}_{S}(A_{n}) \hookrightarrow \operatorname{Aut}_{S}(A_{n+1}) \hookrightarrow \cdots$$

we have a categorical group $Aut(S) = colim_n Aut_S(A_n)$. (monoidal category with objects and morphisms are invertible)

If (as in examples), the sequence is cofinal, we have:

Theorem (80% done; Fontes-Gurski-J.)

$$BS^{-1}S \simeq K_0(S) \times BAut(S)^+$$

Key step Compare colimit of 1-object 2-categories, v.s. 1-object 2-category of colimit (Σ means 1-object "suspension")

$$\operatorname{colim}_n \Sigma \operatorname{Aut}_S(A_n)$$
 v.s. $\Sigma \operatorname{colim}_n \operatorname{Aut}_S(A_n)$ (1-categorical case completely straightforward)

Application to K_3

Theorem (In progress; J.-Parab)

There is a commutator subcategory *E* such that the following is a homotopy fiber sequence.

$$BE \longrightarrow BAut(S) \longrightarrow P_2 BS^{-1}S_0$$

Corollary

$$K_3(R) \cong H_3(BE)$$
 (same method as K_2 calculation using P_1)

Conjecture (Fontes)

The commutator category E is a categorification of the Steinberg group.

- St(R) is the universal central extension of the commutator subgroup of GL(R).
- ► Gersten (1973) proved $K_3(R) \cong H_3(St(R))$ using very different methods.

Conclusion

Algebraic *K*-theory for 2-categories joint with

- E. Fontes, N. Gurski, A.M. Osorno, and A. Parab
 - Background on algebraic K-theory
 - $ightharpoonup K_0, K_1, K_2$
 - ► BGL(R)+
 - $+ = S^{-1}S = Q$
 - ► Sketch of 2-categorical K-theory
 - Motivations: K_3 , Hermitian, relative
 - Current issues: colimits of monoidal 1-categories
 - Future plans: understanding the Steinberg group

Thank You!